In mathematics, Charlier polynomials (also called Poisson–Charlier polynomials) are a family of orthogonal polynomials introduced by Carl Charlier. They are given in terms of the generalized hypergeometric function by
C n ( x ; μ ) = 2 F 0 ( − n , − x ; − ; − 1 / μ ) = ( − 1 ) n n ! L n ( − 1 − x ) ( − 1 μ ) , {\displaystyle C_{n}(x;\mu )={}_{2}F_{0}(-n,-x;-;-1/\mu )=(-1)^{n}n!L_{n}^{(-1-x)}\left(-{\frac {1}{\mu }}\right),}where L {\displaystyle L} are generalized Laguerre polynomials. They satisfy the orthogonality relation
∑ x = 0 ∞ μ x x ! C n ( x ; μ ) C m ( x ; μ ) = μ − n e μ n ! δ n m , μ > 0. {\displaystyle \sum _{x=0}^{\infty }{\frac {\mu ^{x}}{x!}}C_{n}(x;\mu )C_{m}(x;\mu )=\mu ^{-n}e^{\mu }n!\delta _{nm},\quad \mu >0.}They form a Sheffer sequence related to the Poisson process, similar to how Hermite polynomials relate to the Brownian motion.
We don't have any images related to Charlier polynomials yet.
You can add one yourself here.
We don't have any YouTube videos related to Charlier polynomials yet.
You can add one yourself here.
We don't have any PDF documents related to Charlier polynomials yet.
You can add one yourself here.
We don't have any Books related to Charlier polynomials yet.
You can add one yourself here.
We don't have any archived web articles related to Charlier polynomials yet.
See also
- Wilson polynomials, a generalization of Charlier polynomials.
- C. V. L. Charlier (1905–1906) Über die Darstellung willkürlicher Funktionen, Ark. Mat. Astr. och Fysic 2, 20.
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
- Szegő, Gabor (1939), Orthogonal Polynomials, Colloquium Publications – American Mathematical Society, ISBN 978-0-8218-1023-1, MR 0372517 {{citation}}: ISBN / Date incompatibility (help)