Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Pollard's rho algorithm for logarithms
Mathematical algorithm

Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, analogous to Pollard's rho algorithm to solve the integer factorization problem.

The goal is to compute γ {\displaystyle \gamma } such that α γ = β {\displaystyle \alpha ^{\gamma }=\beta } , where β {\displaystyle \beta } belongs to a cyclic group G {\displaystyle G} generated by α {\displaystyle \alpha } . The algorithm computes integers a {\displaystyle a} , b {\displaystyle b} , A {\displaystyle A} , and B {\displaystyle B} such that α a β b = α A β B {\displaystyle \alpha ^{a}\beta ^{b}=\alpha ^{A}\beta ^{B}} . If the underlying group is cyclic of order n {\displaystyle n} , by substituting β {\displaystyle \beta } as α γ {\displaystyle {\alpha }^{\gamma }} and noting that two powers are equal if and only if the exponents are equivalent modulo the order of the base, in this case modulo n {\displaystyle n} , we get that γ {\displaystyle \gamma } is one of the solutions of the equation ( B − b ) γ = ( a − A ) ( mod n ) {\displaystyle (B-b)\gamma =(a-A){\pmod {n}}} . Solutions to this equation are easily obtained using the extended Euclidean algorithm.

To find the needed a {\displaystyle a} , b {\displaystyle b} , A {\displaystyle A} , and B {\displaystyle B} the algorithm uses Floyd's cycle-finding algorithm to find a cycle in the sequence x i = α a i β b i {\displaystyle x_{i}=\alpha ^{a_{i}}\beta ^{b_{i}}} , where the function f : x i ↦ x i + 1 {\displaystyle f:x_{i}\mapsto x_{i+1}} is assumed to be random-looking and thus is likely to enter into a loop of approximate length π n 8 {\displaystyle {\sqrt {\frac {\pi n}{8}}}} after π n 8 {\displaystyle {\sqrt {\frac {\pi n}{8}}}} steps. One way to define such a function is to use the following rules: Partition G {\displaystyle G} into three disjoint subsets S 0 {\displaystyle S_{0}} , S 1 {\displaystyle S_{1}} , and S 2 {\displaystyle S_{2}} of approximately equal size using a hash function. If x i {\displaystyle x_{i}} is in S 0 {\displaystyle S_{0}} then double both a {\displaystyle a} and b {\displaystyle b} ; if x i ∈ S 1 {\displaystyle x_{i}\in S_{1}} then increment a {\displaystyle a} , if x i ∈ S 2 {\displaystyle x_{i}\in S_{2}} then increment b {\displaystyle b} .

We don't have any images related to Pollard's rho algorithm for logarithms yet.
We don't have any YouTube videos related to Pollard's rho algorithm for logarithms yet.
We don't have any PDF documents related to Pollard's rho algorithm for logarithms yet.
We don't have any Books related to Pollard's rho algorithm for logarithms yet.
We don't have any archived web articles related to Pollard's rho algorithm for logarithms yet.

Algorithm

Let G {\displaystyle G} be a cyclic group of order n {\displaystyle n} , and given α , β ∈ G {\displaystyle \alpha ,\beta \in G} , and a partition G = S 0 ∪ S 1 ∪ S 2 {\displaystyle G=S_{0}\cup S_{1}\cup S_{2}} , let f : G → G {\displaystyle f:G\to G} be the map

f ( x ) = { β x x ∈ S 0 x 2 x ∈ S 1 α x x ∈ S 2 {\displaystyle f(x)={\begin{cases}\beta x&x\in S_{0}\\x^{2}&x\in S_{1}\\\alpha x&x\in S_{2}\end{cases}}}

and define maps g : G × Z → Z {\displaystyle g:G\times \mathbb {Z} \to \mathbb {Z} } and h : G × Z → Z {\displaystyle h:G\times \mathbb {Z} \to \mathbb {Z} } by

g ( x , k ) = { k x ∈ S 0 2 k ( mod n ) x ∈ S 1 k + 1 ( mod n ) x ∈ S 2 h ( x , k ) = { k + 1 ( mod n ) x ∈ S 0 2 k ( mod n ) x ∈ S 1 k x ∈ S 2 {\displaystyle {\begin{aligned}g(x,k)&={\begin{cases}k&x\in S_{0}\\2k{\pmod {n}}&x\in S_{1}\\k+1{\pmod {n}}&x\in S_{2}\end{cases}}\\h(x,k)&={\begin{cases}k+1{\pmod {n}}&x\in S_{0}\\2k{\pmod {n}}&x\in S_{1}\\k&x\in S_{2}\end{cases}}\end{aligned}}} input: a: a generator of G b: an element of G output: An integer x such that ax = b, or failure Initialise i ← 0, a0 ← 0, b0 ← 0, x0 ← 1 ∈ G loop ii + 1 xif(xi−1), aig(xi−1, ai−1), bih(xi−1, bi−1) x2i−1 ← f(x2i−2), a2i−1 ← g(x2i−2, a2i−2), b2i−1 ← h(x2i−2, b2i−2) x2if(x2i−1), a2ig(x2i−1, a2i−1), b2ih(x2i−1, b2i−1) while xix2i rbib2i if r = 0 return failure return r−1(a2iai) mod n

Example

Consider, for example, the group generated by 2 modulo N = 1019 {\displaystyle N=1019} (the order of the group is n = 1018 {\displaystyle n=1018} , 2 generates the group of units modulo 1019). The algorithm is implemented by the following C++ program:

#include <stdio.h> const int n = 1018, N = n + 1; /* N = 1019 -- prime */ const int alpha = 2; /* generator */ const int beta = 5; /* 2^{10} = 1024 = 5 (N) */ void new_xab(int& x, int& a, int& b) { switch (x % 3) { case 0: x = x * x % N; a = a*2 % n; b = b*2 % n; break; case 1: x = x * alpha % N; a = (a+1) % n; break; case 2: x = x * beta % N; b = (b+1) % n; break; } } int main(void) { int x = 1, a = 0, b = 0; int X = x, A = a, B = b; for (int i = 1; i < n; ++i) { new_xab(x, a, b); new_xab(X, A, B); new_xab(X, A, B); printf("%3d %4d %3d %3d %4d %3d %3d\n", i, x, a, b, X, A, B); if (x == X) break; } return 0; }

The results are as follows (edited):

i x a b X A B ------------------------------ 1 2 1 0 10 1 1 2 10 1 1 100 2 2 3 20 2 1 1000 3 3 4 100 2 2 425 8 6 5 200 3 2 436 16 14 6 1000 3 3 284 17 15 7 981 4 3 986 17 17 8 425 8 6 194 17 19 .............................. 48 224 680 376 86 299 412 49 101 680 377 860 300 413 50 505 680 378 101 300 415 51 1010 681 378 1010 301 416

That is 2 681 5 378 = 1010 = 2 301 5 416 ( mod 1019 ) {\displaystyle 2^{681}5^{378}=1010=2^{301}5^{416}{\pmod {1019}}} and so ( 416 − 378 ) γ = 681 − 301 ( mod 1018 ) {\displaystyle (416-378)\gamma =681-301{\pmod {1018}}} , for which γ 1 = 10 {\displaystyle \gamma _{1}=10} is a solution as expected. As n = 1018 {\displaystyle n=1018} is not prime, there is another solution γ 2 = 519 {\displaystyle \gamma _{2}=519} , for which 2 519 = 1014 = − 5 ( mod 1019 ) {\displaystyle 2^{519}=1014=-5{\pmod {1019}}} holds.

Complexity

The running time is approximately O ( n ) {\displaystyle {\mathcal {O}}({\sqrt {n}})} . If used together with the Pohlig–Hellman algorithm, the running time of the combined algorithm is O ( p ) {\displaystyle {\mathcal {O}}({\sqrt {p}})} , where p {\displaystyle p} is the largest prime factor of n {\displaystyle n} .