Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Primitive element (finite field)
Generator of the multiplicative group of a finite field

In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, α ∈ GF(q) is called a primitive element if it is a primitive (q − 1)th root of unity in GF(q); this means that each non-zero element of GF(q) can be written as αi for some natural number i.

If q is a prime number, the elements of GF(q) can be identified with the integers modulo q. In this case, a primitive element is also called a primitive root modulo q.

For example, 2 is a primitive element of the field GF(3) and GF(5), but not of GF(7) since it generates the cyclic subgroup {2, 4, 1} of order 3; however, 3 is a primitive element of GF(7). The minimal polynomial of a primitive element is a primitive polynomial.

We don't have any images related to Primitive element (finite field) yet.
We don't have any YouTube videos related to Primitive element (finite field) yet.
We don't have any PDF documents related to Primitive element (finite field) yet.
We don't have any Books related to Primitive element (finite field) yet.
We don't have any archived web articles related to Primitive element (finite field) yet.

Properties

Number of primitive elements

The number of primitive elements in a finite field GF(q) is φ(q − 1), where φ is Euler's totient function, which counts the number of elements less than or equal to m that are coprime to m. This can be proved by using the theorem that the multiplicative group of a finite field GF(q) is cyclic of order q − 1, and the fact that a finite cyclic group of order m contains φ(m) generators.

See also