In algebraic geometry, the projection formula states the following:
For a morphism f : X → Y {\displaystyle f:X\to Y} of ringed spaces, an O X {\displaystyle {\mathcal {O}}_{X}} -module F {\displaystyle {\mathcal {F}}} and a locally free O Y {\displaystyle {\mathcal {O}}_{Y}} -module E {\displaystyle {\mathcal {E}}} of finite rank, the natural maps of sheaves
R i f ∗ F ⊗ E → R i f ∗ ( F ⊗ f ∗ E ) {\displaystyle R^{i}f_{*}{\mathcal {F}}\otimes {\mathcal {E}}\to R^{i}f_{*}({\mathcal {F}}\otimes f^{*}{\mathcal {E}})}are isomorphisms.
There is yet another projection formula in the setting of étale cohomology.
See also
References
Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157, Ch. III, Exercise 8.3}} 978-0-387-90244-9 ↩
Vakil, Ravi (2007–2008), Foundations of algebraic geometry class 38 (PDF), Stanford University http://math.stanford.edu/~vakil/0708-216/216class38.pdf ↩