Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Pulse wave
Periodic rectangular waveform

A pulse wave, also known as a pulse train or rectangular wave, is a periodic, non-sinusoidal waveform formed by holding a signal high for a portion of its period, defined by the duty cycle, and low for the remainder. A 50% duty cycle creates a square wave. Pulse waves serve as the foundation for modulation techniques such as pulse-width modulation (PWM), which varies the duty cycle to encode information, and pulse-amplitude modulation (PAM), which encodes data by changing the amplitude of the pulses. This makes pulse waves integral to signal processing and communication systems.

Related Image Collections Add Image
We don't have any YouTube videos related to Pulse wave yet.
We don't have any PDF documents related to Pulse wave yet.
We don't have any Books related to Pulse wave yet.
We don't have any archived web articles related to Pulse wave yet.

Frequency-domain representation

The Fourier series expansion for a rectangular pulse wave with period T {\displaystyle T} , amplitude A {\displaystyle A} and pulse length τ {\displaystyle \tau } is1

x ( t ) = A τ T + 2 A π ∑ n = 1 ∞ ( 1 n sin ⁡ ( π n τ T ) cos ⁡ ( 2 π n f t ) ) {\displaystyle x(t)=A{\frac {\tau }{T}}+{\frac {2A}{\pi }}\sum _{n=1}^{\infty }\left({\frac {1}{n}}\sin \left(\pi n{\frac {\tau }{T}}\right)\cos \left(2\pi nft\right)\right)} where f = 1 T {\displaystyle f={\frac {1}{T}}} .

Equivalently, if duty cycle d = τ T {\displaystyle d={\frac {\tau }{T}}} is used, and ω = 2 π f {\displaystyle \omega =2\pi f} : x ( t ) = A d + 2 A π ∑ n = 1 ∞ ( 1 n sin ⁡ ( π n d ) cos ⁡ ( n ω t ) ) {\displaystyle x(t)=Ad+{\frac {2A}{\pi }}\sum _{n=1}^{\infty }\left({\frac {1}{n}}\sin \left(\pi nd\right)\cos \left(n\omega t\right)\right)}

Note that, for symmetry, the starting time ( t = 0 {\displaystyle t=0} ) in this expansion is halfway through the first pulse.

Alternatively, x ( t ) {\displaystyle x(t)} can be written using the Sinc function, using the definition sinc ⁡ x = sin ⁡ π x π x {\displaystyle \operatorname {sinc} x={\frac {\sin \pi x}{\pi x}}} , as x ( t ) = A τ T ( 1 + 2 ∑ n = 1 ∞ ( sinc ⁡ ( n τ T ) cos ⁡ ( 2 π n f t ) ) ) {\displaystyle x(t)=A{\frac {\tau }{T}}\left(1+2\sum _{n=1}^{\infty }\left(\operatorname {sinc} \left(n{\frac {\tau }{T}}\right)\cos \left(2\pi nft\right)\right)\right)} or with d = τ T {\displaystyle d={\frac {\tau }{T}}} as x ( t ) = A d ( 1 + 2 ∑ n = 1 ∞ ( sinc ⁡ ( n d ) cos ⁡ ( 2 π n f t ) ) ) {\displaystyle x(t)=Ad\left(1+2\sum _{n=1}^{\infty }\left(\operatorname {sinc} \left(nd\right)\cos \left(2\pi nft\right)\right)\right)}

Generation

A pulse wave can be created by subtracting a sawtooth wave from a phase-shifted version of itself. If the sawtooth waves are bandlimited, the resulting pulse wave is bandlimited, too.

Applications

The harmonic spectrum of a pulse wave is determined by the duty cycle.23456789 Acoustically, the rectangular wave has been described variously as having a narrow10/thin,1112131415 nasal16171819/buzzy20/biting,21 clear,22 resonant,23 rich,2425 round2627 and bright28 sound. Pulse waves are used in many Steve Winwood songs, such as "While You See a Chance".29

See also

References

  1. Smith, Steven W. The Scientist & Engineer's Guide to Digital Signal Processing ISBN 978-0966017632 /wiki/ISBN_(identifier)

  2. Holmes, Thom (2015). Electronic and Experimental Music, p.230. Routledge. ISBN 9781317410232. /wiki/ISBN_(identifier)

  3. Souvignier, Todd (2003). Loops and Grooves, p.12. Hal Leonard. ISBN 9780634048135. /wiki/ISBN_(identifier)

  4. Cann, Simon (2011). How to Make a Noise, [unpaginated]. BookBaby. ISBN 9780955495540. https://books.google.com/books?id=QTBVDQAAQBAJ&dq=pulse+wave+sawtooth+wave&pg=PT20

  5. Pejrolo, Andrea and Metcalfe, Scott B. (2017). Creating Sounds from Scratch, p.56. Oxford University Press. ISBN 9780199921881. /wiki/ISBN_(identifier)

  6. Snoman, Rick (2013). Dance Music Manual, p.11. Taylor & Francis. ISBN 9781136115745. /wiki/ISBN_(identifier)

  7. Skiadas, Christos H. and Skiadas, Charilaos; eds. (2017). Handbook of Applications of Chaos Theory, [unpaginated]. CRC Press. ISBN 9781315356549. https://books.google.com/books?id=CAhEDwAAQBAJ&dq=%22rectangle+wave%22+harmonics&pg=PT440

  8. "Electronic Music Interactive: 14. Square and Rectangle Waves", UOregon.edu. http://pages.uoregon.edu/emi/14.php

  9. Hartmann, William M. (2004). Signals, Sound, and Sensation, p.109. Springer Science & Business Media. ISBN 9781563962837. /wiki/ISBN_(identifier)

  10. Kovarsky, Jerry (Jan 15, 2015). "Synth Soloing in the Style of Steve Winwood". KeyboardMag.com. Retrieved May 4, 2018. http://www.keyboardmag.com/lessons/1251/synth-soloing-in-the-style-of-steve-winwood/50240

  11. Reid, Gordon (February 2000). "Synth Secrets: Modulation", SoundOnSound.com. Retrieved May 4, 2018. http://www.soundonsound.com/sos/feb00/articles/synthsecrets.htm

  12. Souvignier, Todd (2003). Loops and Grooves, p.12. Hal Leonard. ISBN 9780634048135. /wiki/ISBN_(identifier)

  13. Cann, Simon (2011). How to Make a Noise, [unpaginated]. BookBaby. ISBN 9780955495540. https://books.google.com/books?id=QTBVDQAAQBAJ&dq=pulse+wave+sawtooth+wave&pg=PT20

  14. Aikin, Jim (2004). Power Tools for Synthesizer Programming, p.55-56. Hal Leonard. ISBN 9781617745089. /wiki/ISBN_(identifier)

  15. Hurtig, Brent (1988). Synthesizer Basics, p.23. Hal Leonard. ISBN 9780881887143. /wiki/ISBN_(identifier)

  16. Reid, Gordon (February 2000). "Synth Secrets: Modulation", SoundOnSound.com. Retrieved May 4, 2018. http://www.soundonsound.com/sos/feb00/articles/synthsecrets.htm

  17. Souvignier, Todd (2003). Loops and Grooves, p.12. Hal Leonard. ISBN 9780634048135. /wiki/ISBN_(identifier)

  18. Cann, Simon (2011). How to Make a Noise, [unpaginated]. BookBaby. ISBN 9780955495540. https://books.google.com/books?id=QTBVDQAAQBAJ&dq=pulse+wave+sawtooth+wave&pg=PT20

  19. Kovarsky, Jerry (Jan 15, 2015). "Synth Soloing in the Style of Steve Winwood". KeyboardMag.com. Retrieved May 4, 2018. http://www.keyboardmag.com/lessons/1251/synth-soloing-in-the-style-of-steve-winwood/50240

  20. Hurtig, Brent (1988). Synthesizer Basics, p.23. Hal Leonard. ISBN 9780881887143. /wiki/ISBN_(identifier)

  21. Aikin, Jim (2004). Power Tools for Synthesizer Programming, p.55-56. Hal Leonard. ISBN 9781617745089. /wiki/ISBN_(identifier)

  22. Holmes, Thom (2015). Electronic and Experimental Music, p.230. Routledge. ISBN 9781317410232. /wiki/ISBN_(identifier)

  23. Holmes, Thom (2015). Electronic and Experimental Music, p.230. Routledge. ISBN 9781317410232. /wiki/ISBN_(identifier)

  24. Souvignier, Todd (2003). Loops and Grooves, p.12. Hal Leonard. ISBN 9780634048135. /wiki/ISBN_(identifier)

  25. Hurtig, Brent (1988). Synthesizer Basics, p.23. Hal Leonard. ISBN 9780881887143. /wiki/ISBN_(identifier)

  26. Souvignier, Todd (2003). Loops and Grooves, p.12. Hal Leonard. ISBN 9780634048135. /wiki/ISBN_(identifier)

  27. Hurtig, Brent (1988). Synthesizer Basics, p.23. Hal Leonard. ISBN 9780881887143. /wiki/ISBN_(identifier)

  28. Hurtig, Brent (1988). Synthesizer Basics, p.23. Hal Leonard. ISBN 9780881887143. /wiki/ISBN_(identifier)

  29. Kovarsky, Jerry (Jan 15, 2015). "Synth Soloing in the Style of Steve Winwood". KeyboardMag.com. Retrieved May 4, 2018. http://www.keyboardmag.com/lessons/1251/synth-soloing-in-the-style-of-steve-winwood/50240