In q-analog theory, the q {\displaystyle q} -gamma function, or basic gamma function, is a generalization of the ordinary gamma function closely related to the double gamma function. It was introduced by Jackson (1905). It is given by Γ q ( x ) = ( 1 − q ) 1 − x ∏ n = 0 ∞ 1 − q n + 1 1 − q n + x = ( 1 − q ) 1 − x ( q ; q ) ∞ ( q x ; q ) ∞ {\displaystyle \Gamma _{q}(x)=(1-q)^{1-x}\prod _{n=0}^{\infty }{\frac {1-q^{n+1}}{1-q^{n+x}}}=(1-q)^{1-x}\,{\frac {(q;q)_{\infty }}{(q^{x};q)_{\infty }}}} when | q | < 1 {\displaystyle |q|<1} , and Γ q ( x ) = ( q − 1 ; q − 1 ) ∞ ( q − x ; q − 1 ) ∞ ( q − 1 ) 1 − x q ( x 2 ) {\displaystyle \Gamma _{q}(x)={\frac {(q^{-1};q^{-1})_{\infty }}{(q^{-x};q^{-1})_{\infty }}}(q-1)^{1-x}q^{\binom {x}{2}}} if | q | > 1 {\displaystyle |q|>1} . Here ( ⋅ ; ⋅ ) ∞ {\displaystyle (\cdot ;\cdot )_{\infty }} is the infinite q {\displaystyle q} -Pochhammer symbol. The q {\displaystyle q} -gamma function satisfies the functional equation Γ q ( x + 1 ) = 1 − q x 1 − q Γ q ( x ) = [ x ] q Γ q ( x ) {\displaystyle \Gamma _{q}(x+1)={\frac {1-q^{x}}{1-q}}\Gamma _{q}(x)=[x]_{q}\Gamma _{q}(x)} In addition, the q {\displaystyle q} -gamma function satisfies the q-analog of the Bohr–Mollerup theorem, which was found by Richard Askey (Askey (1978)).
For non-negative integers n {\displaystyle n} , Γ q ( n ) = [ n − 1 ] q ! {\displaystyle \Gamma _{q}(n)=[n-1]_{q}!} where [ ⋅ ] q {\displaystyle [\cdot ]_{q}} is the q {\displaystyle q} -factorial function. Thus the q {\displaystyle q} -gamma function can be considered as an extension of the q {\displaystyle q} -factorial function to the real numbers.
The relation to the ordinary gamma function is made explicit in the limit lim q → 1 ± Γ q ( x ) = Γ ( x ) . {\displaystyle \lim _{q\to 1\pm }\Gamma _{q}(x)=\Gamma (x).} There is a simple proof of this limit by Gosper. See the appendix of (Andrews (1986)).
Transformation properties
The q {\displaystyle q} -gamma function satisfies the q-analog of the Gauss multiplication formula (Gasper & Rahman (2004)): Γ q ( n x ) Γ r ( 1 / n ) Γ r ( 2 / n ) ⋯ Γ r ( ( n − 1 ) / n ) = ( 1 − q n 1 − q ) n x − 1 Γ r ( x ) Γ r ( x + 1 / n ) ⋯ Γ r ( x + ( n − 1 ) / n ) , r = q n . {\displaystyle \Gamma _{q}(nx)\Gamma _{r}(1/n)\Gamma _{r}(2/n)\cdots \Gamma _{r}((n-1)/n)=\left({\frac {1-q^{n}}{1-q}}\right)^{nx-1}\Gamma _{r}(x)\Gamma _{r}(x+1/n)\cdots \Gamma _{r}(x+(n-1)/n),\ r=q^{n}.}
Integral representation
The q {\displaystyle q} -gamma function has the following integral representation (Ismail (1981)): 1 Γ q ( z ) = sin ( π z ) π ∫ 0 ∞ t − z d t ( − t ( 1 − q ) ; q ) ∞ . {\displaystyle {\frac {1}{\Gamma _{q}(z)}}={\frac {\sin(\pi z)}{\pi }}\int _{0}^{\infty }{\frac {t^{-z}\mathrm {d} t}{(-t(1-q);q)_{\infty }}}.}
Stirling formula
Moak obtained the following q-analogue of the Stirling formula (see Moak (1984)): log Γ q ( x ) ∼ ( x − 1 / 2 ) log [ x ] q + L i 2 ( 1 − q x ) log q + C q ^ + 1 2 H ( q − 1 ) log q + ∑ k = 1 ∞ B 2 k ( 2 k ) ! ( log q ^ q ^ x − 1 ) 2 k − 1 q ^ x p 2 k − 3 ( q ^ x ) , x → ∞ , {\displaystyle \log \Gamma _{q}(x)\sim (x-1/2)\log[x]_{q}+{\frac {\mathrm {Li} _{2}(1-q^{x})}{\log q}}+C_{\hat {q}}+{\frac {1}{2}}H(q-1)\log q+\sum _{k=1}^{\infty }{\frac {B_{2k}}{(2k)!}}\left({\frac {\log {\hat {q}}}{{\hat {q}}^{x}-1}}\right)^{2k-1}{\hat {q}}^{x}p_{2k-3}({\hat {q}}^{x}),\ x\to \infty ,} q ^ = { q i f 0 < q ≤ 1 1 / q i f q ≥ 1 } , {\displaystyle {\hat {q}}=\left\{{\begin{aligned}q\quad \mathrm {if} \ &0<q\leq 1\\1/q\quad \mathrm {if} \ &q\geq 1\end{aligned}}\right\},} C q = 1 2 log ( 2 π ) + 1 2 log ( q − 1 log q ) − 1 24 log q + log ∑ m = − ∞ ∞ ( r m ( 6 m + 1 ) − r ( 3 m + 1 ) ( 2 m + 1 ) ) , {\displaystyle C_{q}={\frac {1}{2}}\log(2\pi )+{\frac {1}{2}}\log \left({\frac {q-1}{\log q}}\right)-{\frac {1}{24}}\log q+\log \sum _{m=-\infty }^{\infty }\left(r^{m(6m+1)}-r^{(3m+1)(2m+1)}\right),} where r = exp ( 4 π 2 / log q ) {\displaystyle r=\exp(4\pi ^{2}/\log q)} , H {\displaystyle H} denotes the Heaviside step function, B k {\displaystyle B_{k}} stands for the Bernoulli number, L i 2 ( z ) {\displaystyle \mathrm {Li} _{2}(z)} is the dilogarithm, and p k {\displaystyle p_{k}} is a polynomial of degree k {\displaystyle k} satisfying p k ( z ) = z ( 1 − z ) p k − 1 ′ ( z ) + ( k z + 1 ) p k − 1 ( z ) , p 0 = p − 1 = 1 , k = 1 , 2 , ⋯ . {\displaystyle p_{k}(z)=z(1-z)p'_{k-1}(z)+(kz+1)p_{k-1}(z),p_{0}=p_{-1}=1,k=1,2,\cdots .}
Raabe-type formulas
Due to I. Mező, the q-analogue of the Raabe formula exists, at least if we use the q {\displaystyle q} -gamma function when | q | > 1 {\displaystyle |q|>1} . With this restriction, ∫ 0 1 log Γ q ( x ) d x = ζ ( 2 ) log q + log q − 1 q 6 + log ( q − 1 ; q − 1 ) ∞ ( q > 1 ) . {\displaystyle \int _{0}^{1}\log \Gamma _{q}(x)dx={\frac {\zeta (2)}{\log q}}+\log {\sqrt {\frac {q-1}{\sqrt[{6}]{q}}}}+\log(q^{-1};q^{-1})_{\infty }\quad (q>1).} El Bachraoui considered the case 0 < q < 1 {\displaystyle 0<q<1} and proved that ∫ 0 1 log Γ q ( x ) d x = 1 2 log ( 1 − q ) − ζ ( 2 ) log q + log ( q ; q ) ∞ ( 0 < q < 1 ) . {\displaystyle \int _{0}^{1}\log \Gamma _{q}(x)dx={\frac {1}{2}}\log(1-q)-{\frac {\zeta (2)}{\log q}}+\log(q;q)_{\infty }\quad (0<q<1).}
Special values
The following special values are known.1 Γ e − π ( 1 2 ) = e − 7 π / 16 e π − 1 1 + 2 4 2 15 / 16 π 3 / 4 Γ ( 1 4 ) , {\displaystyle \Gamma _{e^{-\pi }}\left({\frac {1}{2}}\right)={\frac {e^{-7\pi /16}{\sqrt {e^{\pi }-1}}{\sqrt[{4}]{1+{\sqrt {2}}}}}{2^{15/16}\pi ^{3/4}}}\,\Gamma \left({\frac {1}{4}}\right),} Γ e − 2 π ( 1 2 ) = e − 7 π / 8 e 2 π − 1 2 9 / 8 π 3 / 4 Γ ( 1 4 ) , {\displaystyle \Gamma _{e^{-2\pi }}\left({\frac {1}{2}}\right)={\frac {e^{-7\pi /8}{\sqrt {e^{2\pi }-1}}}{2^{9/8}\pi ^{3/4}}}\,\Gamma \left({\frac {1}{4}}\right),} Γ e − 4 π ( 1 2 ) = e − 7 π / 4 e 4 π − 1 2 7 / 4 π 3 / 4 Γ ( 1 4 ) , {\displaystyle \Gamma _{e^{-4\pi }}\left({\frac {1}{2}}\right)={\frac {e^{-7\pi /4}{\sqrt {e^{4\pi }-1}}}{2^{7/4}\pi ^{3/4}}}\,\Gamma \left({\frac {1}{4}}\right),} Γ e − 8 π ( 1 2 ) = e − 7 π / 2 e 8 π − 1 2 9 / 4 π 3 / 4 1 + 2 Γ ( 1 4 ) . {\displaystyle \Gamma _{e^{-8\pi }}\left({\frac {1}{2}}\right)={\frac {e^{-7\pi /2}{\sqrt {e^{8\pi }-1}}}{2^{9/4}\pi ^{3/4}{\sqrt {1+{\sqrt {2}}}}}}\,\Gamma \left({\frac {1}{4}}\right).} These are the analogues of the classical formula Γ ( 1 2 ) = π {\displaystyle \Gamma \left({\frac {1}{2}}\right)={\sqrt {\pi }}} .
Moreover, the following analogues of the familiar identity Γ ( 1 4 ) Γ ( 3 4 ) = 2 π {\displaystyle \Gamma \left({\frac {1}{4}}\right)\Gamma \left({\frac {3}{4}}\right)={\sqrt {2}}\pi } hold true: Γ e − 2 π ( 1 4 ) Γ e − 2 π ( 3 4 ) = e − 29 π / 16 ( e 2 π − 1 ) 1 + 2 4 2 33 / 16 π 3 / 2 Γ ( 1 4 ) 2 , {\displaystyle \Gamma _{e^{-2\pi }}\left({\frac {1}{4}}\right)\Gamma _{e^{-2\pi }}\left({\frac {3}{4}}\right)={\frac {e^{-29\pi /16}\left(e^{2\pi }-1\right){\sqrt[{4}]{1+{\sqrt {2}}}}}{2^{33/16}\pi ^{3/2}}}\,\Gamma \left({\frac {1}{4}}\right)^{2},} Γ e − 4 π ( 1 4 ) Γ e − 4 π ( 3 4 ) = e − 29 π / 8 ( e 4 π − 1 ) 2 23 / 8 π 3 / 2 Γ ( 1 4 ) 2 , {\displaystyle \Gamma _{e^{-4\pi }}\left({\frac {1}{4}}\right)\Gamma _{e^{-4\pi }}\left({\frac {3}{4}}\right)={\frac {e^{-29\pi /8}\left(e^{4\pi }-1\right)}{2^{23/8}\pi ^{3/2}}}\,\Gamma \left({\frac {1}{4}}\right)^{2},} Γ e − 8 π ( 1 4 ) Γ e − 8 π ( 3 4 ) = e − 29 π / 4 ( e 8 π − 1 ) 16 π 3 / 2 1 + 2 Γ ( 1 4 ) 2 . {\displaystyle \Gamma _{e^{-8\pi }}\left({\frac {1}{4}}\right)\Gamma _{e^{-8\pi }}\left({\frac {3}{4}}\right)={\frac {e^{-29\pi /4}\left(e^{8\pi }-1\right)}{16\pi ^{3/2}{\sqrt {1+{\sqrt {2}}}}}}\,\Gamma \left({\frac {1}{4}}\right)^{2}.}
Matrix version
Let A {\displaystyle A} be a complex square matrix and positive-definite matrix. Then a q {\displaystyle q} -gamma matrix function can be defined by q {\displaystyle q} -integral:2 Γ q ( A ) := ∫ 0 1 1 − q t A − I E q ( − q t ) d q t {\displaystyle \Gamma _{q}(A):=\int _{0}^{\frac {1}{1-q}}t^{A-I}E_{q}(-qt)\mathrm {d} _{q}t} where E q {\displaystyle E_{q}} is the q-exponential function.
Other q-gamma functions
For other q {\displaystyle q} -gamma functions, see Yamasaki 2006.3
Numerical computation
An iterative algorithm to compute the q-gamma function was proposed by Gabutti and Allasia.4
Further reading
- Zhang, Ruiming (2007), "On asymptotics of q-gamma functions", Journal of Mathematical Analysis and Applications, 339 (2): 1313–1321, arXiv:0705.2802, Bibcode:2008JMAA..339.1313Z, doi:10.1016/j.jmaa.2007.08.006, S2CID 115163047
- Zhang, Ruiming (2010), "On asymptotics of Γq(z) as q approaching 1", arXiv:1011.0720 [math.CA]
- Ismail, Mourad E. H.; Muldoon, Martin E. (1994), "Inequalities and monotonicity properties for gamma and q-gamma functions", in Zahar, R. V. M. (ed.), Approximation and computation a festschrift in honor of Walter Gautschi: Proceedings of the Purdue conference, December 2-5, 1993, vol. 119, Boston: Birkhäuser Verlag, pp. 309–323, arXiv:1301.1749, doi:10.1007/978-1-4684-7415-2_19, ISBN 978-1-4684-7415-2, S2CID 118563435
- Jackson, F. H. (1905), "The Basic Gamma-Function and the Elliptic Functions", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 76 (508), The Royal Society: 127–144, Bibcode:1905RSPSA..76..127J, doi:10.1098/rspa.1905.0011, ISSN 0950-1207, JSTOR 92601
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
- Ismail, Mourad (1981), "The Basic Bessel Functions and Polynomials", SIAM Journal on Mathematical Analysis, 12 (3): 454–468, doi:10.1137/0512038
- Moak, Daniel S. (1984), "The Q-analogue of Stirling's formula", Rocky Mountain J. Math., 14 (2): 403–414, doi:10.1216/RMJ-1984-14-2-403
- Mező, István (2012), "A q-Raabe formula and an integral of the fourth Jacobi theta function", Journal of Number Theory, 133 (2): 692–704, doi:10.1016/j.jnt.2012.08.025, hdl:2437/166217
- El Bachraoui, Mohamed (2017), "Short proofs for q-Raabe formula and integrals for Jacobi theta functions", Journal of Number Theory, 173 (2): 614–620, doi:10.1016/j.jnt.2016.09.028
- Askey, Richard (1978), "The q-gamma and q-beta functions.", Applicable Analysis, 8 (2): 125–141, doi:10.1080/00036817808839221
- Andrews, George E. (1986), q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra., Regional Conference Series in Mathematics, vol. 66, American Mathematical Society
References
Mező, István (2011), "Several special values of Jacobi theta functions", arXiv:1106.1042 [math.NT] /wiki/ArXiv_(identifier) ↩
Salem, Ahmed (June 2012). "On a q-gamma and a q-beta matrix functions". Linear and Multilinear Algebra. 60 (6): 683–696. doi:10.1080/03081087.2011.627562. S2CID 123011613. /wiki/Doi_(identifier) ↩
Yamasaki, Yoshinori (December 2006). "On q-Analogues of the Barnes Multiple Zeta Functions". Tokyo Journal of Mathematics. 29 (2): 413–427. arXiv:math/0412067. doi:10.3836/tjm/1170348176. MR 2284981. S2CID 14082358. Zbl 1192.11060. /wiki/ArXiv_(identifier) ↩
Gabutti, Bruno; Allasia, Giampietro (17 September 2008). "Evaluation of q-gamma function and q-analogues by iterative algorithms". Numerical Algorithms. 49 (1–4): 159–168. Bibcode:2008NuAlg..49..159G. doi:10.1007/s11075-008-9196-5. S2CID 6314057. /wiki/Bibcode_(identifier) ↩