Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Quantum invariant
Concept in mathematical knot theory

In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.

We don't have any images related to Quantum invariant yet.
We don't have any YouTube videos related to Quantum invariant yet.
We don't have any PDF documents related to Quantum invariant yet.
We don't have any Books related to Quantum invariant yet.
We don't have any archived web articles related to Quantum invariant yet.

List of invariants

See also

Further reading

  • Freedman, Michael H. (1990). Topology of 4-manifolds. Princeton, N.J: Princeton University Press. ISBN 978-0691085777. OL 2220094M.
  • Ohtsuki, Tomotada (December 2001). Quantum Invariants. World Scientific Publishing Company. ISBN 9789810246754. OL 9195378M.

References

  1. Reshetikhin, N.; Turaev, V. G. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Inventiones Mathematicae. 103 (3): 547–597. doi:10.1007/BF01239527. MR 1091619. /wiki/Doi_(identifier)

  2. Kontsevich, Maxim (1993). "Vassiliev's knot invariants". Adv. Soviet Math. 16: 137.

  3. Watanabe, Tadayuki (2007). "Knotted trivalent graphs and construction of the LMO invariant from triangulations". Osaka J. Math. 44 (2): 351. Retrieved 4 December 2012. http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.ojm/1183667985

  4. Letzter, Gail (2004). "Invariant differential operators for quantum symmetric spaces, II". arXiv:math/0406194. /wiki/Gail_Letzter

  5. Sawon, Justin (2000). "Topological quantum field theory and hyperkähler geometry". arXiv:math/0009222. /wiki/ArXiv_(identifier)

  6. Petit, Jerome (1999). "The invariant of Turaev-Viro from Group category" (PDF). hal.archives-ouvertes.fr. Retrieved 2019-11-04. http://hal.archives-ouvertes.fr/docs/00/09/02/99/PDF/equality_arxiv_1.pdf

  7. Lawton, Sean (June 28, 2007). "Generators of SL ⁡ ( 2 , C ) {\displaystyle \operatorname {SL} (2,\mathbb {C} )} -Character Varieties of Arbitrary Rank Free Groups" (PDF). The 7th KAIST Geometric Topology Fair. Archived from the original (PDF) on 20 July 2007. Retrieved 13 January 2022. https://web.archive.org/web/20070720181358/http://knot.kaist.ac.kr/7thkgtf/Lawton1.pdf

  8. Reshetikhin, N.; Turaev, V. G. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Inventiones Mathematicae. 103 (3): 547–597. doi:10.1007/BF01239527. MR 1091619. /wiki/Doi_(identifier)