Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Reciprocal Fibonacci constant
Mathematical constant defined as the sum of the reciprocals of the Fibonacci numbers

The reciprocal Fibonacci constant ψ is the sum of the reciprocals of the Fibonacci numbers:

ψ = ∑ k = 1 ∞ 1 F k = 1 1 + 1 1 + 1 2 + 1 3 + 1 5 + 1 8 + 1 13 + 1 21 + ⋯ . {\displaystyle \psi =\sum _{k=1}^{\infty }{\frac {1}{F_{k}}}={\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{8}}+{\frac {1}{13}}+{\frac {1}{21}}+\cdots .}

Because the ratio of successive terms tends to the reciprocal of the golden ratio, which is less than 1, the ratio test shows that the sum converges.

The value of ψ is approximately

ψ = 3.359885666243177553172011302918927179688905133732 … {\displaystyle \psi =3.359885666243177553172011302918927179688905133732\dots } (sequence A079586 in the OEIS).

With k terms, the series gives O(k) digits of accuracy. Bill Gosper derived an accelerated series which provides O(k 2) digits. ψ is irrational, as was conjectured by Paul Erdős, Ronald Graham, and Leonard Carlitz, and proved in 1989 by Richard André-Jeannin.

Its simple continued fraction representation is:

ψ = [ 3 ; 2 , 1 , 3 , 1 , 1 , 13 , 2 , 3 , 3 , 2 , 1 , 1 , 6 , 3 , 2 , 4 , 362 , 2 , 4 , 8 , 6 , 30 , 50 , 1 , 6 , 3 , 3 , 2 , 7 , 2 , 3 , 1 , 3 , 2 , … ] {\displaystyle \psi =[3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,2,4,8,6,30,50,1,6,3,3,2,7,2,3,1,3,2,\dots ]\!\,} (sequence A079587 in the OEIS).

We don't have any images related to Reciprocal Fibonacci constant yet.
We don't have any YouTube videos related to Reciprocal Fibonacci constant yet.
We don't have any PDF documents related to Reciprocal Fibonacci constant yet.
We don't have any Books related to Reciprocal Fibonacci constant yet.
We don't have any archived web articles related to Reciprocal Fibonacci constant yet.

In analogy to the Riemann zeta function, define the Fibonacci zeta function as ζ F ( s ) = ∑ n = 1 ∞ 1 ( F n ) s = 1 1 s + 1 1 s + 1 2 s + 1 3 s + 1 5 s + 1 8 s + ⋯ {\displaystyle \zeta _{F}(s)=\sum _{n=1}^{\infty }{\frac {1}{(F_{n})^{s}}}={\frac {1}{1^{s}}}+{\frac {1}{1^{s}}}+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+{\frac {1}{5^{s}}}+{\frac {1}{8^{s}}}+\cdots } for complex number s with Re(s) > 0, and its analytic continuation elsewhere. Particularly the given function equals ψ when s = 1.3

It was shown that:

  • The value of ζF (2s) is transcendental for any positive integer s, which is similar to the case of even-index Riemann zeta-constants ζ(2s).45
  • The constants ζF (2), ζF (4) and ζF (6) are algebraically independent.67
  • Except for ζF (1) which was proved to be irrational, the number-theoretic properties of ζF (2s + 1) (whenever s is a non-negative integer) are mostly unknown.8

See also

References

  1. Gosper, William R. (1974), Acceleration of Series, Artificial Intelligence Memo #304, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, p. 66, hdl:1721.1/6088. /wiki/Bill_Gosper

  2. André-Jeannin, Richard (1989), "Irrationalité de la somme des inverses de certaines suites récurrentes", Comptes Rendus de l'Académie des Sciences, Série I, 308 (19): 539–541, MR 0999451 http://gallica.bnf.fr/ark:/12148/bpt6k5686125p/f9.image

  3. Murty, M. Ram (2013), "The Fibonacci zeta function", in Prasad, D.; Rajan, C. S.; Sankaranarayanan, A.; Sengupta, J. (eds.), Automorphic representations and L-functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 22, Tata Institute of Fundamental Research, pp. 409–425, ISBN 978-93-80250-49-6, MR 3156859 978-93-80250-49-6

  4. Murty, M. Ram (2013), "The Fibonacci zeta function", in Prasad, D.; Rajan, C. S.; Sankaranarayanan, A.; Sengupta, J. (eds.), Automorphic representations and L-functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 22, Tata Institute of Fundamental Research, pp. 409–425, ISBN 978-93-80250-49-6, MR 3156859 978-93-80250-49-6

  5. Waldschmidt, Michel (January 2022). "Transcendental Number Theory: recent results and open problems" (Lecture slides). /wiki/Michel_Waldschmidt

  6. Murty, M. Ram (2013), "The Fibonacci zeta function", in Prasad, D.; Rajan, C. S.; Sankaranarayanan, A.; Sengupta, J. (eds.), Automorphic representations and L-functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 22, Tata Institute of Fundamental Research, pp. 409–425, ISBN 978-93-80250-49-6, MR 3156859 978-93-80250-49-6

  7. Waldschmidt, Michel (January 2022). "Transcendental Number Theory: recent results and open problems" (Lecture slides). /wiki/Michel_Waldschmidt

  8. Murty, M. Ram (2013), "The Fibonacci zeta function", in Prasad, D.; Rajan, C. S.; Sankaranarayanan, A.; Sengupta, J. (eds.), Automorphic representations and L-functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 22, Tata Institute of Fundamental Research, pp. 409–425, ISBN 978-93-80250-49-6, MR 3156859 978-93-80250-49-6