Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Rectangular mask short-time Fourier transform

In mathematics and Fourier analysis, a rectangular mask short-time Fourier transform (rec-STFT) has the simple form of short-time Fourier transform. Other types of the STFT may require more computation time than the rec-STFT.

The rectangular mask function can be defined for some bound (B) over time (t) as

w ( t ) = {   1 ; | t | ≤ B   0 ; | t | > B {\displaystyle w(t)={\begin{cases}\ 1;&|t|\leq B\\\ 0;&|t|>B\end{cases}}}

We can change B for different tradeoffs between desired time resolution and frequency resolution.

Rec-STFT

X ( t , f ) = ∫ t − B t + B x ( τ ) e − j 2 π f τ d τ {\displaystyle X(t,f)=\int _{t-B}^{t+B}x(\tau )e^{-j2\pi f\tau }\,d\tau }

Inverse form

x ( t ) = ∫ − ∞ ∞ X ( t 1 , f ) e j 2 π f t d f  where  t − B < t 1 < t + B {\displaystyle x(t)=\int _{-\infty }^{\infty }X(t_{1},f)e^{j2\pi ft}\,df{\text{ where }}t-B<t_{1}<t+B}
Related Image Collections Add Image
We don't have any YouTube videos related to Rectangular mask short-time Fourier transform yet.
We don't have any PDF documents related to Rectangular mask short-time Fourier transform yet.
We don't have any Books related to Rectangular mask short-time Fourier transform yet.
We don't have any archived web articles related to Rectangular mask short-time Fourier transform yet.

Property

Rec-STFT has similar properties with Fourier transform

  • Integration

(a)

∫ − ∞ ∞ X ( t , f ) d f = ∫ t − B t + B x ( τ ) ∫ − ∞ ∞ e − j 2 π f τ d f d τ = ∫ t − B t + B x ( τ ) δ ( τ ) d τ = {   x ( 0 ) ; | t | < B   0 ; otherwise {\displaystyle \int _{-\infty }^{\infty }X(t,f)\,df=\int _{t-B}^{t+B}x(\tau )\int _{-\infty }^{\infty }e^{-j2\pi f\tau }\,df\,d\tau =\int _{t-B}^{t+B}x(\tau )\delta (\tau )\,d\tau ={\begin{cases}\ x(0);&|t|<B\\\ 0;&{\text{otherwise}}\end{cases}}}

(b)

∫ − ∞ ∞ X ( t , f ) e − j 2 π f v d f = {   x ( v ) ; v − B < t < v + B   0 ; otherwise {\displaystyle \int _{-\infty }^{\infty }X(t,f)e^{-j2\pi fv}\,df={\begin{cases}\ x(v);&v-B<t<v+B\\\ 0;&{\text{otherwise}}\end{cases}}}
  • Shifting property (shift along x-axis)
∫ t − B t + B x ( τ + τ 0 ) e − j 2 π f τ d τ = X ( t + τ 0 , f ) e j 2 π f τ 0 {\displaystyle \int _{t-B}^{t+B}x(\tau +\tau _{0})e^{-j2\pi f\tau }\,d\tau =X(t+\tau _{0},f)e^{j2\pi f\tau _{0}}}
  • Modulation property (shift along y-axis)
∫ t − B t + B [ x ( τ ) e j 2 π f 0 τ ] d τ = X ( t , f − f 0 ) {\displaystyle \int _{t-B}^{t+B}[x(\tau )e^{j2\pi f_{0}\tau }]d\tau =X(t,f-f_{0})}
  • special input
  1. When x ( t ) = δ ( t ) , X ( t , f ) = {   1 ; | t | < B   0 ; otherwise {\displaystyle x(t)=\delta (t),X(t,f)={\begin{cases}\ 1;&|t|<B\\\ 0;&{\text{otherwise}}\end{cases}}}
  2. When x ( t ) = 1 , X ( t , f ) = 2 B sinc ⁡ ( 2 B f ) e j 2 π f t {\displaystyle x(t)=1,X(t,f)=2B\operatorname {sinc} (2Bf)e^{j2\pi ft}}
  • Linearity property

If h ( t ) = α x ( t ) + β y ( t ) {\displaystyle h(t)=\alpha x(t)+\beta y(t)\,} , H ( t , f ) , X ( t , f ) , {\displaystyle H(t,f),X(t,f),} and Y ( t , f ) {\displaystyle Y(t,f)\,} are their rec-STFTs, then

H ( t , f ) = α X ( t , f ) + β Y ( t , f ) . {\displaystyle H(t,f)=\alpha X(t,f)+\beta Y(t,f).}
  • Power integration property
∫ − ∞ ∞ | X ( t , f ) | 2 d f = ∫ t − B t + B | x ( τ ) | 2 d τ {\displaystyle \int _{-\infty }^{\infty }|X(t,f)|^{2}\,df=\int _{t-B}^{t+B}|x(\tau )|^{2}\,d\tau } ∫ − ∞ ∞ ∫ − ∞ ∞ | X ( t , f ) | 2 d f d t = 2 B ∫ − ∞ ∞ | x ( τ ) | 2 d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }|X(t,f)|^{2}\,df\,dt=2B\int _{-\infty }^{\infty }|x(\tau )|^{2}\,d\tau } ∫ − ∞ ∞ X ( t , f ) Y ∗ ( t , f ) d f = ∫ t − B t + B x ( τ ) y ∗ ( τ ) d τ {\displaystyle \int _{-\infty }^{\infty }X(t,f)Y^{*}(t,f)\,df=\int _{t-B}^{t+B}x(\tau )y^{*}(\tau )\,d\tau } ∫ − ∞ ∞ ∫ − ∞ ∞ X ( t , f ) Y ∗ ( t , f ) d f d t = 2 B ∫ − ∞ ∞ x ( τ ) y ∗ ( τ ) d τ {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }X(t,f)Y^{*}(t,f)\,df\,dt=2B\int _{-\infty }^{\infty }x(\tau )y^{*}(\tau )\,d\tau }

Example of tradeoff with different B

From the image, when B is smaller, the time resolution is better. Otherwise, when B is larger, the frequency resolution is better.

Advantage and disadvantage

Compared with the Fourier transform:

  • Advantage: The instantaneous frequency can be observed.
  • Disadvantage: Higher complexity of computation.

Compared with other types of time-frequency analysis:

  • Advantage: Least computation time for digital implementation.
  • Disadvantage: Quality is worse than other types of time-frequency analysis. The jump discontinuity of the edges of the rectangular mask results in Gibbs ringing artifacts in the frequency domain, which can be alleviated with smoother windows.

See also

  1. Jian-Jiun Ding (2014) Time-frequency analysis and wavelet transform