In mathematics and Fourier analysis, a rectangular mask short-time Fourier transform (rec-STFT) has the simple form of short-time Fourier transform. Other types of the STFT may require more computation time than the rec-STFT.
The rectangular mask function can be defined for some bound (B) over time (t) as
w ( t ) = { 1 ; | t | ≤ B 0 ; | t | > B {\displaystyle w(t)={\begin{cases}\ 1;&|t|\leq B\\\ 0;&|t|>B\end{cases}}}We can change B for different tradeoffs between desired time resolution and frequency resolution.
Rec-STFT
X ( t , f ) = ∫ t − B t + B x ( τ ) e − j 2 π f τ d τ {\displaystyle X(t,f)=\int _{t-B}^{t+B}x(\tau )e^{-j2\pi f\tau }\,d\tau }Inverse form
x ( t ) = ∫ − ∞ ∞ X ( t 1 , f ) e j 2 π f t d f where t − B < t 1 < t + B {\displaystyle x(t)=\int _{-\infty }^{\infty }X(t_{1},f)e^{j2\pi ft}\,df{\text{ where }}t-B<t_{1}<t+B}Property
Rec-STFT has similar properties with Fourier transform
- Integration
(a)
∫ − ∞ ∞ X ( t , f ) d f = ∫ t − B t + B x ( τ ) ∫ − ∞ ∞ e − j 2 π f τ d f d τ = ∫ t − B t + B x ( τ ) δ ( τ ) d τ = { x ( 0 ) ; | t | < B 0 ; otherwise {\displaystyle \int _{-\infty }^{\infty }X(t,f)\,df=\int _{t-B}^{t+B}x(\tau )\int _{-\infty }^{\infty }e^{-j2\pi f\tau }\,df\,d\tau =\int _{t-B}^{t+B}x(\tau )\delta (\tau )\,d\tau ={\begin{cases}\ x(0);&|t|<B\\\ 0;&{\text{otherwise}}\end{cases}}}(b)
∫ − ∞ ∞ X ( t , f ) e − j 2 π f v d f = { x ( v ) ; v − B < t < v + B 0 ; otherwise {\displaystyle \int _{-\infty }^{\infty }X(t,f)e^{-j2\pi fv}\,df={\begin{cases}\ x(v);&v-B<t<v+B\\\ 0;&{\text{otherwise}}\end{cases}}}- Shifting property (shift along x-axis)
- Modulation property (shift along y-axis)
- special input
- When x ( t ) = δ ( t ) , X ( t , f ) = { 1 ; | t | < B 0 ; otherwise {\displaystyle x(t)=\delta (t),X(t,f)={\begin{cases}\ 1;&|t|<B\\\ 0;&{\text{otherwise}}\end{cases}}}
- When x ( t ) = 1 , X ( t , f ) = 2 B sinc ( 2 B f ) e j 2 π f t {\displaystyle x(t)=1,X(t,f)=2B\operatorname {sinc} (2Bf)e^{j2\pi ft}}
- Linearity property
If h ( t ) = α x ( t ) + β y ( t ) {\displaystyle h(t)=\alpha x(t)+\beta y(t)\,} , H ( t , f ) , X ( t , f ) , {\displaystyle H(t,f),X(t,f),} and Y ( t , f ) {\displaystyle Y(t,f)\,} are their rec-STFTs, then
H ( t , f ) = α X ( t , f ) + β Y ( t , f ) . {\displaystyle H(t,f)=\alpha X(t,f)+\beta Y(t,f).}- Power integration property
- Energy sum property (Parseval's theorem)
Example of tradeoff with different B
From the image, when B is smaller, the time resolution is better. Otherwise, when B is larger, the frequency resolution is better.
Advantage and disadvantage
Compared with the Fourier transform:
- Advantage: The instantaneous frequency can be observed.
- Disadvantage: Higher complexity of computation.
Compared with other types of time-frequency analysis:
- Advantage: Least computation time for digital implementation.
- Disadvantage: Quality is worse than other types of time-frequency analysis. The jump discontinuity of the edges of the rectangular mask results in Gibbs ringing artifacts in the frequency domain, which can be alleviated with smoother windows.