Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Reflected Brownian motion
Wiener process with reflecting spatial boundaries

In probability theory, reflected Brownian motion (or regulated Brownian motion, both with the acronym RBM) is a Wiener process in a space with reflecting boundaries. In the physical literature, this process describes diffusion in a confined space and it is often called confined Brownian motion. For example it can describe the motion of hard spheres in water confined between two walls.

RBMs have been shown to describe queueing models experiencing heavy traffic as first proposed by Kingman and proven by Iglehart and Whitt.

We don't have any images related to Reflected Brownian motion yet.
We don't have any YouTube videos related to Reflected Brownian motion yet.
We don't have any PDF documents related to Reflected Brownian motion yet.
We don't have any Books related to Reflected Brownian motion yet.
We don't have any archived web articles related to Reflected Brownian motion yet.

Definition

A d–dimensional reflected Brownian motion Z is a stochastic process on R + d {\displaystyle \mathbb {R} _{+}^{d}} uniquely defined by

  • a d–dimensional drift vector μ
  • a d×d non-singular covariance matrix Σ and
  • a d×d reflection matrix R.9

where X(t) is an unconstrained Brownian motion with drift μ and variance Σ, and10

Z ( t ) = X ( t ) + R Y ( t ) {\displaystyle Z(t)=X(t)+RY(t)}

with Y(t) a d–dimensional vector where

  • Y is continuous and non–decreasing with Y(0) = 0
  • Yj only increases at times for which Zj = 0 for j = 1,2,...,d
  • Z(t) ∈  R + d {\displaystyle \mathbb {R} _{+}^{d}} , t ≥ 0.

The reflection matrix describes boundary behaviour. In the interior of R + d {\displaystyle \scriptstyle \mathbb {R} _{+}^{d}} the process behaves like a Wiener process; on the boundary "roughly speaking, Z is pushed in direction Rj whenever the boundary surface { z ∈ R + d : z j = 0 } {\displaystyle \scriptstyle \{z\in \mathbb {R} _{+}^{d}:z_{j}=0\}} is hit, where Rj is the jth column of the matrix R."11 The process Yj is the local time of the process on the corresponding section of the boundary.

Stability conditions

Stability conditions are known for RBMs in 1, 2, and 3 dimensions. "The problem of recurrence classification for SRBMs in four and higher dimensions remains open."12 In the special case where R is an M-matrix then necessary and sufficient conditions for stability are13

  1. R is a non-singular matrix and
  2. R−1μ < 0.

Marginal and stationary distribution

One dimension

The marginal distribution (transient distribution) of a one-dimensional Brownian motion starting at 0 restricted to positive values (a single reflecting barrier at 0) with drift μ and variance σ2 is

P ( Z ( t ) ≤ z ) = Φ ( z − μ t σ t 1 / 2 ) − e − 2 μ z / σ 2 Φ ( − z − μ t σ t 1 / 2 ) {\displaystyle \mathbb {P} (Z(t)\leq z)=\Phi \left({\frac {z-\mu t}{\sigma t^{1/2}}}\right)-e^{-2\mu z/\sigma ^{2}}\Phi \left({\frac {-z-\mu t}{\sigma t^{1/2}}}\right)}

for all t ≥ 0, (with Φ the cumulative distribution function of the normal distribution) which yields (for μ < 0) when taking t → ∞ an exponential distribution14

P ( Z < z ) = 1 − e − 2 μ z / σ 2 . {\displaystyle \mathbb {P} (Z<z)=1-e^{-2\mu z/\sigma ^{2}}.}

For fixed t, the distribution of Z(t) coincides with the distribution of the running maximum M(t) of the Brownian motion,

Z ( t ) ∼ M ( t ) = sup s ∈ [ 0 , t ] X ( s ) . {\displaystyle Z(t)\sim M(t)=\sup _{s\in [0,t]}X(s).}

But be aware that the distributions of the processes as a whole are very different. In particular, M(t) is increasing in t, which is not the case for Z(t).

The heat kernel for reflected Brownian motion at p b {\displaystyle p_{b}} :

f ( x , p b ) = e − ( ( x − u ) / a ) 2 / 2 + e − ( ( x + u − 2 p b ) / a ) 2 / 2 a ( 2 π ) 1 / 2 {\displaystyle f(x,p_{b})={\frac {e^{-((x-u)/a)^{2}/2}+e^{-((x+u-2p_{b})/a)^{2}/2}}{a(2\pi )^{1/2}}}}

For the plane above x ≥ p b {\displaystyle x\geq p_{b}}

Multiple dimensions

The stationary distribution of a reflected Brownian motion in multiple dimensions is tractable analytically when there is a product form stationary distribution,15 which occurs when the process is stable and16

2 Σ = R D + D R ′ {\displaystyle 2\Sigma =RD+DR'}

where D = diag(Σ). In this case the probability density function is17

p ( z 1 , z 2 , … , z d ) = ∏ k = 1 d η k e − η k z k {\displaystyle p(z_{1},z_{2},\ldots ,z_{d})=\prod _{k=1}^{d}\eta _{k}e^{-\eta _{k}z_{k}}}

where ηk = 2μkγk/Σkk and γ = R−1μ. Closed-form expressions for situations where the product form condition does not hold can be computed numerically as described below in the simulation section.

Simulation

One dimension

In one dimension the simulated process is the absolute value of a Wiener process. The following MATLAB program creates a sample path.18

% rbm.m n = 10^4; h=10^(-3); t=h.*(0:n); mu=-1; X = zeros(1, n+1); M=X; B=X; B(1)=3; X(1)=3; for k=2:n+1 Y = sqrt(h) * randn; U = rand(1); B(k) = B(k-1) + mu * h - Y; M = (Y + sqrt(Y ^ 2 - 2 * h * log(U))) / 2; X(k) = max(M-Y, X(k-1) + h * mu - Y); end subplot(2, 1, 1) plot(t, X, 'k-'); subplot(2, 1, 2) plot(t, X-B, 'k-');

The error involved in discrete simulations has been quantified.19

Multiple dimensions

QNET allows simulation of steady state RBMs.202122

Other boundary conditions

Feller described possible boundary condition for the process232425

See also

References

  1. Dieker, A. B. (2011). "Reflected Brownian Motion". Wiley Encyclopedia of Operations Research and Management Science. doi:10.1002/9780470400531.eorms0711. ISBN 9780470400531. 9780470400531

  2. Harrison, J. Michael (1985). Brownian Motion and Stochastic Flow Systems (PDF). John Wiley & Sons. ISBN 978-0471819394. 978-0471819394

  3. Veestraeten, D. (2004). "The Conditional Probability Density Function for a Reflected Brownian Motion". Computational Economics. 24 (2): 185–207. doi:10.1023/B:CSEM.0000049491.13935.af. S2CID 121673717. /wiki/Doi_(identifier)

  4. Faucheux, Luc P.; Libchaber, Albert J. (1994-06-01). "Confined Brownian motion". Physical Review E. 49 (6): 5158–5163. doi:10.1103/PhysRevE.49.5158. ISSN 1063-651X. https://link.aps.org/doi/10.1103/PhysRevE.49.5158

  5. Harrison, J. Michael (1985). Brownian Motion and Stochastic Flow Systems (PDF). John Wiley & Sons. ISBN 978-0471819394. 978-0471819394

  6. Kingman, J. F. C. (1962). "On Queues in Heavy Traffic". Journal of the Royal Statistical Society. Series B (Methodological). 24 (2): 383–392. doi:10.1111/j.2517-6161.1962.tb00465.x. JSTOR 2984229. /wiki/John_Kingman

  7. Iglehart, Donald L.; Whitt, Ward (1970). "Multiple Channel Queues in Heavy Traffic. I". Advances in Applied Probability. 2 (1): 150–177. doi:10.2307/3518347. JSTOR 3518347. S2CID 202104090. /wiki/Ward_Whitt

  8. Iglehart, Donald L.; Ward, Whitt (1970). "Multiple Channel Queues in Heavy Traffic. II: Sequences, Networks, and Batches" (PDF). Advances in Applied Probability. 2 (2): 355–369. doi:10.2307/1426324. JSTOR 1426324. S2CID 120281300. Retrieved 30 Nov 2012. /wiki/Ward_Whitt

  9. Harrison, J. M.; Williams, R. J. (1987). "Brownian models of open queueing networks with homogeneous customer populations" (PDF). Stochastics. 22 (2): 77. doi:10.1080/17442508708833469. /wiki/J._Michael_Harrison

  10. Bramson, M.; Dai, J. G.; Harrison, J. M. (2010). "Positive recurrence of reflecting Brownian motion in three dimensions" (PDF). The Annals of Applied Probability. 20 (2): 753. arXiv:1009.5746. doi:10.1214/09-AAP631. S2CID 2251853. /wiki/J._Michael_Harrison

  11. Bramson, M.; Dai, J. G.; Harrison, J. M. (2010). "Positive recurrence of reflecting Brownian motion in three dimensions" (PDF). The Annals of Applied Probability. 20 (2): 753. arXiv:1009.5746. doi:10.1214/09-AAP631. S2CID 2251853. /wiki/J._Michael_Harrison

  12. Bramson, M.; Dai, J. G.; Harrison, J. M. (2010). "Positive recurrence of reflecting Brownian motion in three dimensions" (PDF). The Annals of Applied Probability. 20 (2): 753. arXiv:1009.5746. doi:10.1214/09-AAP631. S2CID 2251853. /wiki/J._Michael_Harrison

  13. Bramson, M.; Dai, J. G.; Harrison, J. M. (2010). "Positive recurrence of reflecting Brownian motion in three dimensions" (PDF). The Annals of Applied Probability. 20 (2): 753. arXiv:1009.5746. doi:10.1214/09-AAP631. S2CID 2251853. /wiki/J._Michael_Harrison

  14. Harrison, J. Michael (1985). Brownian Motion and Stochastic Flow Systems (PDF). John Wiley & Sons. ISBN 978-0471819394. 978-0471819394

  15. Harrison, J. M.; Williams, R. J. (1992). "Brownian Models of Feedforward Queueing Networks: Quasireversibility and Product Form Solutions". The Annals of Applied Probability. 2 (2): 263. doi:10.1214/aoap/1177005704. JSTOR 2959751. /wiki/J._Michael_Harrison

  16. Harrison, J. M.; Reiman, M. I. (1981). "On the Distribution of Multidimensional Reflected Brownian Motion". SIAM Journal on Applied Mathematics. 41 (2): 345–361. doi:10.1137/0141030. /wiki/J._Michael_Harrison

  17. Harrison, J. M.; Williams, R. J. (1987). "Brownian models of open queueing networks with homogeneous customer populations" (PDF). Stochastics. 22 (2): 77. doi:10.1080/17442508708833469. /wiki/J._Michael_Harrison

  18. Kroese, Dirk P.; Taimre, Thomas; Botev, Zdravko I. (2011). Handbook of Monte Carlo Methods. John Wiley & Sons. p. 202. ISBN 978-1118014950. 978-1118014950

  19. Asmussen, S.; Glynn, P.; Pitman, J. (1995). "Discretization Error in Simulation of One-Dimensional Reflecting Brownian Motion". The Annals of Applied Probability. 5 (4): 875. doi:10.1214/aoap/1177004597. JSTOR 2245096. https://doi.org/10.1214%2Faoap%2F1177004597

  20. Dai, Jim G.; Harrison, J. Michael (1991). "Steady-State Analysis of RBM in a Rectangle: Numerical Methods and A Queueing Application". The Annals of Applied Probability. 1 (1): 16–35. CiteSeerX 10.1.1.44.5520. doi:10.1214/aoap/1177005979. JSTOR 2959623. /wiki/J._Michael_Harrison

  21. Dai, Jiangang "Jim" (1990). "Section A.5 (code for BNET)" (PDF). Steady-state analysis of reflected Brownian motions: characterization, numerical methods and queueing applications (Ph. D. thesis) (Thesis). Stanford University. Dept. of Mathematics. Retrieved 5 December 2012. http://www2.isye.gatech.edu/~dai/publications/dai90Dissertation.pdf

  22. Dai, J. G.; Harrison, J. M. (1992). "Reflected Brownian Motion in an Orthant: Numerical Methods for Steady-State Analysis" (PDF). The Annals of Applied Probability. 2 (1): 65–86. doi:10.1214/aoap/1177005771. JSTOR 2959654. /wiki/J._Michael_Harrison

  23. Skorokhod, A. V. (1962). "Stochastic Equations for Diffusion Processes in a Bounded Region. II". Theory of Probability and Its Applications. 7: 3–23. doi:10.1137/1107002. /wiki/Anatoliy_Skorokhod

  24. Feller, W. (1954). "Diffusion processes in one dimension". Transactions of the American Mathematical Society. 77: 1–31. doi:10.1090/S0002-9947-1954-0063607-6. MR 0063607. /wiki/William_Feller

  25. Engelbert, H. J.; Peskir, G. (2012). "Stochastic Differential Equations for Sticky Brownian Motion" (PDF). Probab. Statist. Group Manchester Research Report (5). http://www.maths.manchester.ac.uk/~goran/skorokhod.pdf

  26. Skorokhod, A. V. (1962). "Stochastic Equations for Diffusion Processes in a Bounded Region. II". Theory of Probability and Its Applications. 7: 3–23. doi:10.1137/1107002. /wiki/Anatoliy_Skorokhod

  27. Chung, K. L.; Zhao, Z. (1995). "Killed Brownian Motion". From Brownian Motion to Schrödinger's Equation. Grundlehren der mathematischen Wissenschaften. Vol. 312. p. 31. doi:10.1007/978-3-642-57856-4_2. ISBN 978-3-642-63381-2. 978-3-642-63381-2

  28. Skorokhod, A. V. (1962). "Stochastic Equations for Diffusion Processes in a Bounded Region. II". Theory of Probability and Its Applications. 7: 3–23. doi:10.1137/1107002. /wiki/Anatoliy_Skorokhod

  29. Skorokhod, A. V. (1962). "Stochastic Equations for Diffusion Processes in a Bounded Region. II". Theory of Probability and Its Applications. 7: 3–23. doi:10.1137/1107002. /wiki/Anatoliy_Skorokhod

  30. Skorokhod, A. V. (1962). "Stochastic Equations for Diffusion Processes in a Bounded Region. II". Theory of Probability and Its Applications. 7: 3–23. doi:10.1137/1107002. /wiki/Anatoliy_Skorokhod

  31. Itō, K.; McKean, H. P. (1996). "Time changes and killing". Diffusion Processes and their Sample Paths. pp. 164. doi:10.1007/978-3-642-62025-6_6. ISBN 978-3-540-60629-1. 978-3-540-60629-1