Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Regenerative process
Class of stochastic processes in applied probability

In applied probability, a regenerative process is a class of stochastic process with the property that certain portions of the process can be treated as being statistically independent of each other. This property can be used in the derivation of theoretical properties of such processes.

Related Image Collections Add Image
We don't have any YouTube videos related to Regenerative process yet.
We don't have any PDF documents related to Regenerative process yet.
We don't have any Books related to Regenerative process yet.
We don't have any archived web articles related to Regenerative process yet.

History

Regenerative processes were first defined by Walter L. Smith in Proceedings of the Royal Society A in 1955.23

Definition

A regenerative process is a stochastic process with time points at which, from a probabilistic point of view, the process restarts itself.4 These time point may themselves be determined by the evolution of the process. That is to say, the process {X(t), t ≥ 0} is a regenerative process if there exist time points 0 ≤ T0 < T1 < T2 < ... such that the post-Tk process {X(Tk + t) : t ≥ 0}

  • has the same distribution as the post-T0 process {X(T0 + t) : t ≥ 0}
  • is independent of the pre-Tk process {X(t) : 0 ≤ t < Tk}

for k ≥ 1.5 Intuitively this means a regenerative process can be split into i.i.d. cycles.6

When T0 = 0, X(t) is called a nondelayed regenerative process. Else, the process is called a delayed regenerative process.7

Examples

Properties

lim t → ∞ 1 t ∫ 0 t X ( s ) d s = E [ R ] E [ τ ] . {\displaystyle \lim _{t\to \infty }{\frac {1}{t}}\int _{0}^{t}X(s)ds={\frac {\mathbb {E} [R]}{\mathbb {E} [\tau ]}}.} where τ {\displaystyle \tau } is the length of the first cycle and R = ∫ 0 τ X ( s ) d s {\displaystyle R=\int _{0}^{\tau }X(s)ds} is the value over the first cycle.
  • A measurable function of a regenerative process is a regenerative process with the same regeneration time13

References

  1. Ross, S. M. (2010). "Renewal Theory and Its Applications". Introduction to Probability Models. pp. 421–641. doi:10.1016/B978-0-12-375686-2.00003-0. ISBN 9780123756862. 9780123756862

  2. Schellhaas, Helmut (1979). "Semi-Regenerative Processes with Unbounded Rewards". Mathematics of Operations Research. 4: 70–78. doi:10.1287/moor.4.1.70. JSTOR 3689240. /wiki/Mathematics_of_Operations_Research

  3. Smith, W. L. (1955). "Regenerative Stochastic Processes". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 232 (1188): 6–31. Bibcode:1955RSPSA.232....6S. doi:10.1098/rspa.1955.0198. /wiki/Wally_Smith_(mathematician)

  4. Sheldon M. Ross (2007). Introduction to probability models. Academic Press. p. 442. ISBN 0-12-598062-0. 0-12-598062-0

  5. Haas, Peter J. (2002). "Regenerative Simulation". Stochastic Petri Nets. Springer Series in Operations Research and Financial Engineering. pp. 189–273. doi:10.1007/0-387-21552-2_6. ISBN 0-387-95445-7. 0-387-95445-7

  6. Asmussen, Søren (2003). "Regenerative Processes". Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 168–185. doi:10.1007/0-387-21525-5_6. ISBN 978-0-387-00211-8. 978-0-387-00211-8

  7. Haas, Peter J. (2002). "Regenerative Simulation". Stochastic Petri Nets. Springer Series in Operations Research and Financial Engineering. pp. 189–273. doi:10.1007/0-387-21552-2_6. ISBN 0-387-95445-7. 0-387-95445-7

  8. Sheldon M. Ross (2007). Introduction to probability models. Academic Press. p. 442. ISBN 0-12-598062-0. 0-12-598062-0

  9. Sheldon M. Ross (2007). Introduction to probability models. Academic Press. p. 442. ISBN 0-12-598062-0. 0-12-598062-0

  10. Sheldon M. Ross (2007). Introduction to probability models. Academic Press. p. 442. ISBN 0-12-598062-0. 0-12-598062-0

  11. Asmussen, Søren (2003). "Regenerative Processes". Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 168–185. doi:10.1007/0-387-21525-5_6. ISBN 978-0-387-00211-8. 978-0-387-00211-8

  12. Sigman, Karl (2009) Regenerative Processes, lecture notes

  13. Sigman, Karl (2009) Regenerative Processes, lecture notes