Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Ring-opening polymerization
Polymerization of cyclic monomers into a polymer with fewer cycles

In polymer chemistry, ring-opening polymerization (ROP) is a form of chain-growth polymerization in which the terminus of a polymer chain attacks cyclic monomers to form a longer polymer (see figure). The reactive center can be radical, anionic or cationic.

Ring-opening of cyclic monomers is often driven by the relief of bond-angle strain. Thus, as is the case for other types of polymerization, the enthalpy change in ring-opening is negative. Many rings undergo ROP.

We don't have any images related to Ring-opening polymerization yet.
We don't have any YouTube videos related to Ring-opening polymerization yet.
We don't have any PDF documents related to Ring-opening polymerization yet.
We don't have any Books related to Ring-opening polymerization yet.
We don't have any archived web articles related to Ring-opening polymerization yet.

Monomers

Many cyclic monomers are amenable to ROP.3 These include epoxides,45 cyclic trisiloxanes, some lactones67 and lactides,8 cyclic anhydrides,9 cyclic carbonates,10 and amino acid N-carboxyanhydrides.1112 Many strained cycloalkenes, e.g norbornene, are suitable monomers via ring-opening metathesis polymerization. Even highly strained cycloalkane rings, such as cyclopropane13 and cyclobutane14 derivatives, can undergo ROP.

History

Ring-opening polymerization has been used since the beginning of the 1900s to produce polymers. Synthesis of polypeptides which has the oldest history of ROP, dates back to the work in 1906 by Leuchs.15 Subsequently, the ROP of anhydro sugars provided polysaccharides, including synthetic dextran, xanthan gum, welan gum, gellan gum, diutan gum, and pullulan. Mechanisms and thermodynamics of ring-opening polymerization were established in the 1950s.1617 The first high-molecular weight polymers (Mn up to 105) with a repeating unit were prepared by ROP as early as in 1976.1819

New research shows that ROP can be completed with cyclic esters with minimal to no use of solvents by using resonant acoustic mixing.20

An industrial application is the production of nylon-6 from caprolactam.

Mechanisms

Ring-opening polymerization can proceed via radical, anionic, or cationic polymerization as described below.21 Additionally, radical ROP is useful in producing polymers with functional groups incorporated in the backbone chain that cannot otherwise be synthesized via conventional chain-growth polymerization of vinyl monomers. For instance, radical ROP can produce polymers with ethers, esters, amides, and carbonates as functional groups along the main chain.2223

Anionic ring-opening polymerization (AROP)

Main article: Anionic polymerization

Anionic ring-opening polymerizations (AROP) involve nucleophilic reagents as initiators. Monomers with a three-member ring structure - such as epoxides, aziridines, and episulfides - undergo anionic ROP.24

A typical example of anionic ROP is that of ε-caprolactone, initiated by an alkoxide.25

Cationic ring-opening polymerization

Main article: Cationic polymerization

Cationic initiators and intermediates characterize cationic ring-opening polymerization (CROP). Examples of cyclic monomers that polymerize through this mechanism include lactones, lactams, amines, and ethers.26 CROP proceeds through an SN1 or SN2 propagation, chain-growth process.27 The mechanism is affected by the stability of the resulting cationic species. For example, if the atom bearing the positive charge is stabilized by electron-donating groups, polymerization will proceed by the SN1 mechanism.28 The cationic species is a heteroatom and the chain grows by the addition of cyclic monomers thereby opening the ring system.

The monomers can be activated by Bronsted acids, carbenium ions, onium ions, and metal cations.29

CROP can be a living polymerization and can be terminated by nucleophilic reagents such as phenoxy anions, phosphines, or polyanions.30 When the amount of monomers becomes depleted, termination can occur intra or intermolecularly. The active end can "backbite" the chain, forming a macrocycle. Alkyl chain transfer is also possible, where the active end is quenched by transferring an alkyl chain to another polymer.

Ring-opening metathesis polymerization

Main article: Ring-opening metathesis polymerization

Ring-opening metathesis polymerisation (ROMP) produces unsaturated polymers from cycloalkenes or bicycloalkenes. It requires organometallic catalysts.31

The mechanism for ROMP follows similar pathways as olefin metathesis. The initiation process involves the coordination of the cycloalkene monomer to the metal alkylidene complex, followed by a [2+2] type cycloaddition to form the metallacyclobutane intermediate that cycloreverts to form a new alkylidene species.3233

Commercially relevant unsaturated polymers synthesized by ROMP include polynorbornene, polycyclooctene, and polycyclopentadiene.34

Thermodynamics

The formal thermodynamic criterion of a given monomer polymerizability is related to a sign of the free enthalpy (Gibbs free energy) of polymerization: Δ G p ( x y ) = Δ H p ( x y ) − T Δ S p ( x y ) {\displaystyle \Delta G_{p}(xy)=\Delta H_{p}(xy)-T\Delta S_{p}(xy)} where:

x and y indicate monomer and polymer states, respectively (x and/or y = l (liquid), g (gaseous), c (amorphous solid), c' (crystalline solid), s (solution)); ΔHp(xy) is the enthalpy of polymerization (SI unit: joule per kelvin); ΔSp(xy) is the entropy of polymerization (SI unit: joule); T is the absolute temperature (SI unit: kelvin).

The free enthalpy of polymerization (ΔGp) may be expressed as a sum of standard enthalpy of polymerization (ΔGp°) and a term related to instantaneous monomer molecules and growing macromolecules concentrations: Δ G p = Δ G p ∘ + R T ln ⁡ [ … − ( m ) i + 1 m ∗ ] [ M ] [ … − ( m ) i m ∗ ] {\displaystyle \Delta G_{p}=\Delta G_{p}^{\circ }+RT\ln {\frac {[\ldots -({\ce {m}})_{i+1}{\ce {m}}^{\ast }]}{[{\ce {M}}][\ldots -({\ce {m}})_{i}{\ce {m}}^{\ast }]}}} where:

R is the gas constant; M is the monomer; (m)i is the monomer in an initial state; m* is the active monomer.

Following Flory–Huggins solution theory that the reactivity of an active center, located at a macromolecule of a sufficiently long macromolecular chain, does not depend on its degree of polymerization (DPi), and taking in to account that ΔGp° = ΔHp° − TΔSp° (where ΔHp° and ΔSp° indicate a standard polymerization enthalpy and entropy, respectively), we obtain:

Δ G p = Δ H p ∘ − T ( Δ S p ∘ + R ln ⁡ [ M ] ) {\displaystyle \Delta G_{p}=\Delta H_{p}^{\circ }-T(\Delta S_{p}^{\circ }+R\ln[M])}

At equilibriumGp = 0), when polymerization is complete the monomer concentration ([M]eq) assumes a value determined by standard polymerization parameters (ΔHp° and ΔSp°) and polymerization temperature: [ M ] e q = exp ⁡ ( Δ H p ∘ R T − Δ S p ∘ R ) ln ⁡ D P n D P n − 1 [ M ] e q = Δ H p ∘ R T − Δ S p ∘ R [ M ] e q = D P n − 1 D P n exp ⁡ ( Δ H p ∘ R T − Δ S p ∘ R ) {\displaystyle {\begin{aligned}{}[{\ce {M}}]_{\rm {eq}}&=\exp \left({\frac {\Delta H_{p}^{\circ }}{RT}}-{\frac {\Delta S_{p}^{\circ }}{R}}\right)\\[4pt]\ln {\frac {DP_{n}}{DP_{n}-1}}[{\ce {M}}]_{\rm {eq}}&={\frac {\Delta H_{p}^{\circ }}{RT}}-{\frac {\Delta S_{p}^{\circ }}{R}}\\[4pt][{\ce {M}}]_{\rm {eq}}&={\frac {DP_{n}-1}{DP_{n}}}\exp \left({\frac {\Delta H_{p}^{\circ }}{RT}}-{\frac {\Delta S_{p}^{\circ }}{R}}\right)\end{aligned}}} Polymerization is possible only when [M]0 > [M]eq. Eventually, at or above the so-called ceiling temperature (Tc), at which [M]eq = [M]0, formation of the high polymer does not occur. T c = Δ H p ∘ Δ S p ∘ + R ln ⁡ [ M ] 0 ; ( Δ H p ∘ < 0 ,   Δ S p ∘ < 0 ) T f = Δ H p ∘ Δ S p ∘ + R ln ⁡ [ M ] 0 ; ( Δ H p ∘ > 0 ,   Δ S p ∘ > 0 ) {\displaystyle {\begin{aligned}T_{c}&={\frac {\Delta H_{p}^{\circ }}{\Delta S_{p}^{\circ }+R\ln[{\ce {M}}]_{0}}};\quad (\Delta H_{p}^{\circ }<0,\ \Delta S_{p}^{\circ }<0)\\[4pt]T_{f}&={\frac {\Delta H_{p}^{\circ }}{\Delta S_{p}^{\circ }+R\ln[{\ce {M}}]_{0}}};\quad (\Delta H_{p}^{\circ }>0,\ \Delta S_{p}^{\circ }>0)\end{aligned}}} For example, tetrahydrofuran (THF) cannot be polymerized above Tc = 84 °C, nor cyclo-octasulfur (S8) below Tf = 159 °C.35363738 However, for many monomers, Tc and Tf, for polymerization in the bulk, are well above or below the operable polymerization temperatures, respectively. The polymerization of a majority of monomers is accompanied by an entropy decrease, due mostly to the loss in the translational degrees of freedom. In this situation, polymerization is thermodynamically allowed only when the enthalpic contribution into ΔGp prevails (thus, when ΔHp° < 0 and ΔSp° < 0, the inequality |ΔHp| > −TΔSp is required). Therefore, the higher the ring strain, the lower the resulting monomer concentration at equilibrium.

Additional reading

References

  1. Young, Robert J. (2011). Introduction to Polymers. Boca Raton: CRC Press. ISBN 978-0-8493-3929-5. 978-0-8493-3929-5

  2. Perła-Kaján, J.; Twardowski, T.; Jakubowski, H. (2007). "Mechanisms of homocysteine toxicity in humans". Amino Acids. 32 (4): 561–572. doi:10.1007/s00726-006-0432-9. PMID 17285228. /wiki/Doi_(identifier)

  3. Nuyken, Oskar; Pask, Stephen (2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361. https://doi.org/10.3390%2Fpolym5020361

  4. Yann Sarazin; Jean-François Carpentier (2015). "Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides". Chemical Reviews. 115 (9): 3564–3614. doi:10.1021/acs.chemrev.5b00033. PMID 25897976. /wiki/Doi_(identifier)

  5. Longo, Julie M.; Sanford, Maria J.; Coates, Geoffrey W. (2016). "Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure–Property Relationships". Chemical Reviews. 116 (24): 15167–15197. doi:10.1021/acs.chemrev.6b00553. PMID 27936619. /wiki/Doi_(identifier)

  6. Yann Sarazin; Jean-François Carpentier (2015). "Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides". Chemical Reviews. 115 (9): 3564–3614. doi:10.1021/acs.chemrev.5b00033. PMID 25897976. /wiki/Doi_(identifier)

  7. JEROME, C; LECOMTE, P (2008-06-10). "Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization☆". Advanced Drug Delivery Reviews. 60 (9): 1056–1076. doi:10.1016/j.addr.2008.02.008. hdl:2268/3723. ISSN 0169-409X. PMID 18403043. http://orbi.ulg.ac.be/handle/2268/3723

  8. JEROME, C; LECOMTE, P (2008-06-10). "Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization☆". Advanced Drug Delivery Reviews. 60 (9): 1056–1076. doi:10.1016/j.addr.2008.02.008. hdl:2268/3723. ISSN 0169-409X. PMID 18403043. http://orbi.ulg.ac.be/handle/2268/3723

  9. Longo, Julie M.; Sanford, Maria J.; Coates, Geoffrey W. (2016). "Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure–Property Relationships". Chemical Reviews. 116 (24): 15167–15197. doi:10.1021/acs.chemrev.6b00553. PMID 27936619. /wiki/Doi_(identifier)

  10. Matsumura, Shuichi; Tsukada, Keisuke; Toshima, Kazunobu (May 1997). "Enzyme-Catalyzed Ring-Opening Polymerization of 1,3-Dioxan-2-one to Poly(trimethylene carbonate)". Macromolecules. 30 (10): 3122–3124. Bibcode:1997MaMol..30.3122M. doi:10.1021/ma961862g. /wiki/Bibcode_(identifier)

  11. Kricheldorf, H. R. (2006). "Polypeptides and 100 Years of Chemistry of α-Amino Acid N-Carboxyanhydrides". Angewandte Chemie International Edition. 45 (35): 5752–5784. doi:10.1002/anie.200600693. PMID 16948174. /wiki/Doi_(identifier)

  12. Nikos Hadjichristidis; Hermis Iatrou; Marinos Pitsikalis; Georgios Sakellariou (2009). "Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides". Chemical Reviews. 109 (11): 5528–5578. doi:10.1021/cr900049t. PMID 19691359. /wiki/Doi_(identifier)

  13. Scott, R. J.; Gunning, H. E. (1952). "The Polymerization of Cyclopropane". J. Phys. Chem. 56 (1): 156–160. doi:10.1021/j150493a031. /wiki/Doi_(identifier)

  14. Yokozawa, Tsutomu; Tsuruta, Ei-ichi (1996). "Ring-Opening Polymerization of the Cyclobutane Adduct of Methyl Tricyanoethylenecarboxylate and Ethyl Vinyl Ether". Macromolecules. 29 (25): 8053–8056. Bibcode:1996MaMol..29.8053Y. doi:10.1021/ma9608535. /wiki/Bibcode_(identifier)

  15. Leuchs, H. (1906). "Glycine-carbonic acid". Berichte der Deutschen Chemischen Gesellschaft. 39: 857. doi:10.1002/cber.190603901133. https://zenodo.org/record/1426172

  16. Dainton, F. S.; Devlin, T. R. E.; Small, P. A. (1955). "The thermodynamics of polymerization of cyclic compounds by ring opening". Transactions of the Faraday Society. 51: 1710. doi:10.1039/TF9555101710. /wiki/Doi_(identifier)

  17. Conix, André; Smets, G. (January 1955). "Ring opening in lactam polymers". Journal of Polymer Science. 15 (79): 221–229. Bibcode:1955JPoSc..15..221C. doi:10.1002/pol.1955.120157918. /wiki/Bibcode_(identifier)

  18. Kałuz̀ynski, Krzysztof; Libiszowski, Jan; Penczek, Stanisław (1977). "Poly(2-hydro-2-oxo-1,3,2-dioxaphosphorinane). Preparation and NMR spectra". Die Makromolekulare Chemie. 178 (10): 2943–2947. doi:10.1002/macp.1977.021781017. ISSN 0025-116X. /wiki/Doi_(identifier)

  19. Libiszowski, Jan; Kałużynski, Krzysztof; Penczek, Stanisław (June 1978). "Polymerization of cyclic esters of phosphoric acid. VI. Poly(alkyl ethylene phosphates). Polymerization of 2-alkoxy-2-oxo-1,3,2-dioxaphospholans and structure of polymers". Journal of Polymer Science: Polymer Chemistry Edition. 16 (6): 1275–1283. Bibcode:1978JPoSA..16.1275L. doi:10.1002/pol.1978.170160610. /wiki/Bibcode_(identifier)

  20. Fowler, Harriet R.; O’Shea, Riley; Sefton, Joseph; Howard, Shaun C.; Muir, Benjamin W.; Stockman, Robert A.; Taresco, Vincenzo; Irvine, Derek J. (2025-02-10). "Rapid, Highly Sustainable Ring-Opening Polymerization via Resonant Acoustic Mixing". ACS Sustainable Chemistry & Engineering. 13 (5): 1916–1926. doi:10.1021/acssuschemeng.4c06330. PMC 11816011. PMID 39950108. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816011

  21. Nuyken, Oskar; Stephen D. Pask (25 April 2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361. https://doi.org/10.3390%2Fpolym5020361

  22. Nuyken, Oskar; Stephen D. Pask (25 April 2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361. https://doi.org/10.3390%2Fpolym5020361

  23. Dubois, Philippe (2008). Handbook of ring-opening polymerization (1. Aufl. ed.). Weinheim: Wiley-VCH. ISBN 978-3-527-31953-4. 978-3-527-31953-4

  24. Dubois, Philippe (2008). Handbook of ring-opening polymerization (1. Aufl. ed.). Weinheim: Wiley-VCH. ISBN 978-3-527-31953-4. 978-3-527-31953-4

  25. Dubois, Philippe (2008). Handbook of ring-opening polymerization (1. Aufl. ed.). Weinheim: Wiley-VCH. ISBN 978-3-527-31953-4. 978-3-527-31953-4

  26. Cowie, John McKenzie Grant (2008). Polymers: Chemistry and Physics of Modern Materials. Boca Raton, Florida: CRC Press. pp. 105–107. ISBN 978-0-8493-9813-1. 978-0-8493-9813-1

  27. Nuyken, Oskar; Stephen D. Pask (25 April 2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361. https://doi.org/10.3390%2Fpolym5020361

  28. Dubois, Philippe (2008). Handbook of ring-opening polymerization (1. Aufl. ed.). Weinheim: Wiley-VCH. ISBN 978-3-527-31953-4. 978-3-527-31953-4

  29. Nuyken, Oskar; Stephen D. Pask (25 April 2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361. https://doi.org/10.3390%2Fpolym5020361

  30. Nuyken, Oskar; Stephen D. Pask (25 April 2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361. https://doi.org/10.3390%2Fpolym5020361

  31. Nuyken, Oskar; Stephen D. Pask (25 April 2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361. https://doi.org/10.3390%2Fpolym5020361

  32. Sutthasupa, Sutthira; Shiotsuki, Masashi; Sanda, Fumio (13 October 2010). "Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials". Polymer Journal. 42 (12): 905–915. doi:10.1038/pj.2010.94. https://doi.org/10.1038%2Fpj.2010.94

  33. Hartwig, John F. (2010). Organotransition metal chemistry: from bonding to catalysis. Sausalito, California: University Science Books. ISBN 978-1-891389-53-5. 978-1-891389-53-5

  34. Walsh, Dylan J.; Lau, Sii Hong; Hyatt, Michael G.; Guironnet, Damien (2017-09-25). "Kinetic Study of Living Ring-Opening Metathesis Polymerization with Third-Generation Grubbs Catalysts". Journal of the American Chemical Society. 139 (39): 13644–13647. Bibcode:2017JAChS.13913644W. doi:10.1021/jacs.7b08010. ISSN 0002-7863. PMID 28944665. /wiki/Bibcode_(identifier)

  35. Tobolsky, A. V. (July 1957). "Equilibrium polymerization in the presence of an ionic initiator". Journal of Polymer Science. 25 (109): 220–221. Bibcode:1957JPoSc..25..220T. doi:10.1002/pol.1957.1202510909. /wiki/Bibcode_(identifier)

  36. Tobolsky, A. V. (August 1958). "Equilibrium polymerization in the presence of an ionic initiator". Journal of Polymer Science. 31 (122): 126. Bibcode:1958JPoSc..31..126T. doi:10.1002/pol.1958.1203112214. https://doi.org/10.1002%2Fpol.1958.1203112214

  37. Tobolsky, Arthur V.; Eisenberg, Adi (May 1959). "Equilibrium Polymerization of Sulfur". Journal of the American Chemical Society. 81 (4): 780–782. Bibcode:1959JAChS..81..780T. doi:10.1021/ja01513a004. /wiki/Bibcode_(identifier)

  38. Tobolsky, A. V.; Eisenberg, A. (January 1960). "A General Treatment of Equilibrium Polymerization". Journal of the American Chemical Society. 82 (2): 289–293. Bibcode:1960JAChS..82..289T. doi:10.1021/ja01487a009. /wiki/Bibcode_(identifier)