Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Selberg integral
Mathematical function

In mathematics, the Selberg integral is a generalization of Euler beta function to n dimensions introduced by Atle Selberg.

We don't have any images related to Selberg integral yet.
We don't have any YouTube videos related to Selberg integral yet.
We don't have any PDF documents related to Selberg integral yet.
We don't have any Books related to Selberg integral yet.
We don't have any archived web articles related to Selberg integral yet.

Selberg's integral formula

When R e ( α ) > 0 , R e ( β ) > 0 , R e ( γ ) > − min ( 1 n , R e ( α ) n − 1 , R e ( β ) n − 1 ) {\displaystyle Re(\alpha )>0,Re(\beta )>0,Re(\gamma )>-\min \left({\frac {1}{n}},{\frac {Re(\alpha )}{n-1}},{\frac {Re(\beta )}{n-1}}\right)} , we have

S n ( α , β , γ ) = ∫ 0 1 ⋯ ∫ 0 1 ∏ i = 1 n t i α − 1 ( 1 − t i ) β − 1 ∏ 1 ≤ i < j ≤ n | t i − t j | 2 γ d t 1 ⋯ d t n = ∏ j = 0 n − 1 Γ ( α + j γ ) Γ ( β + j γ ) Γ ( 1 + ( j + 1 ) γ ) Γ ( α + β + ( n + j − 1 ) γ ) Γ ( 1 + γ ) {\displaystyle {\begin{aligned}S_{n}(\alpha ,\beta ,\gamma )&=\int _{0}^{1}\cdots \int _{0}^{1}\prod _{i=1}^{n}t_{i}^{\alpha -1}(1-t_{i})^{\beta -1}\prod _{1\leq i<j\leq n}|t_{i}-t_{j}|^{2\gamma }\,dt_{1}\cdots dt_{n}\\&=\prod _{j=0}^{n-1}{\frac {\Gamma (\alpha +j\gamma )\Gamma (\beta +j\gamma )\Gamma (1+(j+1)\gamma )}{\Gamma (\alpha +\beta +(n+j-1)\gamma )\Gamma (1+\gamma )}}\end{aligned}}}

Selberg's formula implies Dixon's identity for well poised hypergeometric series, and some special cases of Dyson's conjecture. This is a corollary of Aomoto.

Aomoto's integral formula

Aomoto proved a slightly more general integral formula.3 With the same conditions as Selberg's formula,

∫ 0 1 ⋯ ∫ 0 1 ( ∏ i = 1 k t i ) ∏ i = 1 n t i α − 1 ( 1 − t i ) β − 1 ∏ 1 ≤ i < j ≤ n | t i − t j | 2 γ d t 1 ⋯ d t n {\displaystyle \int _{0}^{1}\cdots \int _{0}^{1}\left(\prod _{i=1}^{k}t_{i}\right)\prod _{i=1}^{n}t_{i}^{\alpha -1}(1-t_{i})^{\beta -1}\prod _{1\leq i<j\leq n}|t_{i}-t_{j}|^{2\gamma }\,dt_{1}\cdots dt_{n}} = S n ( α , β , γ ) ∏ j = 1 k α + ( n − j ) γ α + β + ( 2 n − j − 1 ) γ . {\displaystyle =S_{n}(\alpha ,\beta ,\gamma )\prod _{j=1}^{k}{\frac {\alpha +(n-j)\gamma }{\alpha +\beta +(2n-j-1)\gamma }}.}

A proof is found in Chapter 8 of Andrews, Askey & Roy (1999).4

Mehta's integral

When R e ( γ ) > − 1 / n {\displaystyle Re(\gamma )>-1/n} ,

1 ( 2 π ) n / 2 ∫ − ∞ ∞ ⋯ ∫ − ∞ ∞ ∏ i = 1 n e − t i 2 / 2 ∏ 1 ≤ i < j ≤ n | t i − t j | 2 γ d t 1 ⋯ d t n = ∏ j = 1 n Γ ( 1 + j γ ) Γ ( 1 + γ ) . {\displaystyle {\frac {1}{(2\pi )^{n/2}}}\int _{-\infty }^{\infty }\cdots \int _{-\infty }^{\infty }\prod _{i=1}^{n}e^{-t_{i}^{2}/2}\prod _{1\leq i<j\leq n}|t_{i}-t_{j}|^{2\gamma }\,dt_{1}\cdots dt_{n}=\prod _{j=1}^{n}{\frac {\Gamma (1+j\gamma )}{\Gamma (1+\gamma )}}.}

It is a corollary of Selberg, by setting α = β {\displaystyle \alpha =\beta } , and change of variables with t i = 1 + t i ′ / 2 α 2 {\displaystyle t_{i}={\frac {1+t'_{i}/{\sqrt {2\alpha }}}{2}}} , then taking α → ∞ {\displaystyle \alpha \to \infty } .

This was conjectured by Mehta & Dyson (1963), who were unaware of Selberg's earlier work.5

It is the partition function for a gas of point charges moving on a line that are attracted to the origin.6

In particular, when γ = 1 {\displaystyle \gamma =1} , the term on the right is ∏ j = 1 n j ! {\displaystyle \prod _{j=1}^{n}j!} .

Macdonald's integral

Macdonald (1982) conjectured the following extension of Mehta's integral to all finite root systems, Mehta's original case corresponding to the An−1 root system.7

1 ( 2 π ) n / 2 ∫ ⋯ ∫ | ∏ r 2 ( x , r ) ( r , r ) | γ e − ( x 1 2 + ⋯ + x n 2 ) / 2 d x 1 ⋯ d x n = ∏ j = 1 n Γ ( 1 + d j γ ) Γ ( 1 + γ ) {\displaystyle {\frac {1}{(2\pi )^{n/2}}}\int \cdots \int \left|\prod _{r}{\frac {2(x,r)}{(r,r)}}\right|^{\gamma }e^{-(x_{1}^{2}+\cdots +x_{n}^{2})/2}dx_{1}\cdots dx_{n}=\prod _{j=1}^{n}{\frac {\Gamma (1+d_{j}\gamma )}{\Gamma (1+\gamma )}}}

The product is over the roots r of the roots system and the numbers dj are the degrees of the generators of the ring of invariants of the reflection group. Opdam (1989) gave a uniform proof for all crystallographic reflection groups.8 Several years later he proved it in full generality, making use of computer-aided calculations by Garvan.9

References

  1. Selberg, Atle (1944). "Remarks on a multiple integral". Norsk Mat. Tidsskr. 26: 71–78. MR 0018287. https://cds.cern.ch/record/411367

  2. Forrester, Peter J.; Warnaar, S. Ole (2008). "The importance of the Selberg integral". Bull. Amer. Math. Soc. 45 (4): 489–534. arXiv:0710.3981. doi:10.1090/S0273-0979-08-01221-4. S2CID 14185100. /wiki/ArXiv_(identifier)

  3. Aomoto, K (1987). "On the complex Selberg integral". The Quarterly Journal of Mathematics. 38 (4): 385–399. doi:10.1093/qmath/38.4.385. https://academic.oup.com/qjmath/article-abstract/38/4/385/1530985

  4. Andrews, George; Askey, Richard; Roy, Ranjan (1999). "The Selberg integral and its applications". Special functions. Encyclopedia of Mathematics and its Applications. Vol. 71. Cambridge University Press. ISBN 978-0-521-62321-6. MR 1688958. 978-0-521-62321-6

  5. Mehta, Madan Lal; Dyson, Freeman J. (1963). "Statistical theory of the energy levels of complex systems. V". Journal of Mathematical Physics. 4 (5): 713–719. Bibcode:1963JMP.....4..713M. doi:10.1063/1.1704009. MR 0151232. https://pubs.aip.org/aip/jmp/article-abstract/4/5/713/230167/Statistical-Theory-of-the-Energy-Levels-of-Complex

  6. Mehta, Madan Lal (2004). Random matrices. Pure and Applied Mathematics (Amsterdam). Vol. 142 (3rd ed.). Elsevier/Academic Press, Amsterdam. ISBN 978-0-12-088409-4. MR 2129906. 978-0-12-088409-4

  7. Macdonald, I. G. (1982). "Some conjectures for root systems". SIAM Journal on Mathematical Analysis. 13 (6): 988–1007. doi:10.1137/0513070. ISSN 0036-1410. MR 0674768. /wiki/Doi_(identifier)

  8. Opdam, E.M. (1989). "Some applications of hypergeometric shift operators". Invent. Math. 98 (1): 275–282. Bibcode:1989InMat..98....1O. doi:10.1007/BF01388841. MR 1010152. S2CID 54571505. http://dare.uva.nl/personal/pure/en/publications/some-applications-of-hypergeometric-shift-operators(4d1bc98d-e707-47eb-aaec-164e5488d0bc).html

  9. Opdam, E.M. (1993). "Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group". Compositio Mathematica. 85 (3): 333–373. MR 1214452. Zbl 0778.33009. http://www.numdam.org/item?id=CM_1993__85_3_333_0