Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Sodium periodate
Chemical compound

Sodium periodate is an inorganic salt, composed of a sodium cation and the periodate anion. It may also be regarded as the sodium salt of periodic acid. Like many periodates, it can exist in two different forms: sodium metaperiodate (formula‍ NaIO4) and sodium orthoperiodate (normally Na2H3IO6, but sometimes the fully reacted salt Na5IO6). Both salts are useful oxidising agents.

Related Image Collections Add Image
We don't have any YouTube videos related to Sodium periodate yet.
We don't have any PDF documents related to Sodium periodate yet.
We don't have any Books related to Sodium periodate yet.
We don't have any archived web articles related to Sodium periodate yet.

Preparation

Classically, periodate was produced in the form of sodium hydrogen periodate (Na3H2IO6).2 This commercially available, but can also be produced by the oxidation of iodates with chlorine and sodium hydroxide.34 Or, similarly, from iodides by oxidation with bromine and sodium hydroxide:

NaIO3 + Cl2 + 4 NaOH → Na3H2IO6 + 2NaCl + H2O NaI + 4 Br2 + 10 NaOH → Na3H2IO6 + 8 NaBr + 4 H2O

Modern industrial scale production involves the electrochemical oxidation of iodates, on a lead dioxide (PbO2) anode, with the following standard electrode potential:

H5IO6 + H+ + 2e− → IO−3 + 3 H2O     E° = 1.6 V5

Sodium metaperiodate can be prepared by the dehydration of sodium hydrogen periodate with nitric acid.

Na3H2IO6 + 2 HNO3 → NaIO4 + 2 NaNO3 + 2 H2O

Structure

Sodium metaperiodate (NaIO4) forms tetragonal crystals (space group I41/a) consisting of slightly distorted IO−4 ions with average I–O bond distances of 1.775 Å; the Na+ ions are surrounded by 8 oxygen atoms at distances of 2.54 and 2.60 Å.6

Sodium hydrogen periodate (Na2H3IO6) forms orthorhombic crystals (space group Pnnm). Iodine and sodium atoms are both surrounded by an octahedral arrangement of 6 oxygen atoms; however the NaO6 octahedron is strongly distorted. IO6 and NaO6 groups are linked via common vertices and edges.7

Powder diffraction indicates that Na5IO6 crystallises in the monoclinic system (space group C2/m).8

Uses

Further information: Periodate § Reactions

Sodium periodate can be used in solution to open saccharide rings between vicinal diols leaving two aldehyde groups. This process is often used in labeling saccharides with fluorescent molecules or other tags such as biotin. Because the process requires vicinal diols, periodate oxidation is often used to selectively label the 3′-ends of RNA (ribose has vicinal diols) instead of DNA as deoxyribose does not have vicinal diols.

NaIO4 is used in organic chemistry to cleave diols to produce two aldehydes.9

In 2013 the US Army announced that it would replace environmentally harmful chemicals barium nitrate and potassium perchlorate with sodium metaperiodate for use in their tracer ammunition.10

See also

  • See Fatiadi, Synthesis (1974) 229–272 for a review of periodate chemistry.

References

  1. Andrew G. Wee, Jason Slobodian, Manuel A. Fernández-Rodríguez and Enrique Aguilar "Sodium Periodate" e-EROS Encyclopedia of Reagents for Organic Synthesis 2006. doi:10.1002/047084289X.rs095.pub2 /wiki/Doi_(identifier)

  2. M. Schmeisser (1963). "Periodic acid". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2pages=323. NY,NY: Academic Press.

  3. M. Schmeisser (1963). "Periodic acid". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2pages=323. NY,NY: Academic Press.

  4. Hill, Arthur E. (October 1928). "Ternary Systems. VII. The Periodates of the Alkali Metals". Journal of the American Chemical Society. 50 (10): 2678–2692. Bibcode:1928JAChS..50.2678H. doi:10.1021/ja01397a013. /wiki/Bibcode_(identifier)

  5. Parsons, Roger (1959). Handbook of electrochemical constants. Butterworths Scientific Publications Ltd. p. 71. https://archive.org/details/ost-chemistry-parsons-handbookofelectrochemicalconstants

  6. Kálmán, A.; Cruickshank, D. W. J. (15 November 1970). "Refinement of the structure of NaIO4". Acta Crystallographica Section B. 26 (11): 1782–1785. Bibcode:1970AcCrB..26.1782K. doi:10.1107/S0567740870004880. /wiki/Bibcode_(identifier)

  7. Jansen, Martin; Rehr, Anette (1988). "Na2H3IO6, eine Variante der Markasitstruktur". Zeitschrift für anorganische und allgemeine Chemie (in German). 567 (1): 95–100. doi:10.1002/zaac.19885670111. /wiki/Doi_(identifier)

  8. Betz, T.; Hoppe, R. (May 1984). "Über Perrhenate. 2. Zur Kenntnis von Li5ReO6 und Na5ReO6 – mit einer Bemerkung über Na5IO6". Zeitschrift für anorganische und allgemeine Chemie (in German). 512 (5): 19–33. doi:10.1002/zaac.19845120504. /wiki/Doi_(identifier)

  9. McMurry, John (2012). Organic chemistry (8th ed., [international ed.] ed.). Singapore: Brooks/Cole Cengage Learning. pp. 285–286. ISBN 9780840054531. 9780840054531

  10. "Picatinny to remove tons of toxins from lethal rounds". U.S. Army. 19 September 2013. Retrieved 31 October 2013. https://www.army.mil/article/109769/Picatinny_to_remove_tons_of_toxins_from_lethal_rounds/