Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Spt function

The spt function (smallest parts function) is a function in number theory that counts the sum of the number of smallest parts in each integer partition of a positive integer. It is related to the partition function.

The first few values of spt(n) are:

1, 3, 5, 10, 14, 26, 35, 57, 80, 119, 161, 238, 315, 440, 589 ... (sequence A092269 in the OEIS)
We don't have any images related to Spt function yet.
We don't have any YouTube videos related to Spt function yet.
We don't have any PDF documents related to Spt function yet.
We don't have any Books related to Spt function yet.
We don't have any archived web articles related to Spt function yet.

Example

For example, there are five partitions of 4 (with smallest parts underlined):

4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1

These partitions have 1, 1, 2, 2, and 4 smallest parts, respectively. So spt(4) = 1 + 1 + 2 + 2 + 4 = 10.

Properties

Like the partition function, spt(n) has a generating function. It is given by

S ( q ) = ∑ n = 1 ∞ s p t ( n ) q n = 1 ( q ) ∞ ∑ n = 1 ∞ q n ∏ m = 1 n − 1 ( 1 − q m ) 1 − q n {\displaystyle S(q)=\sum _{n=1}^{\infty }\mathrm {spt} (n)q^{n}={\frac {1}{(q)_{\infty }}}\sum _{n=1}^{\infty }{\frac {q^{n}\prod _{m=1}^{n-1}(1-q^{m})}{1-q^{n}}}}

where ( q ) ∞ = ∏ n = 1 ∞ ( 1 − q n ) {\displaystyle (q)_{\infty }=\prod _{n=1}^{\infty }(1-q^{n})} .

The function S ( q ) {\displaystyle S(q)} is related to a mock modular form. Let E 2 ( z ) {\displaystyle E_{2}(z)} denote the weight 2 quasi-modular Eisenstein series and let η ( z ) {\displaystyle \eta (z)} denote the Dedekind eta function. Then for q = e 2 π i z {\displaystyle q=e^{2\pi iz}} , the function

S ~ ( z ) := q − 1 / 24 S ( q ) − 1 12 E 2 ( z ) η ( z ) {\displaystyle {\tilde {S}}(z):=q^{-1/24}S(q)-{\frac {1}{12}}{\frac {E_{2}(z)}{\eta (z)}}}

is a mock modular form of weight 3/2 on the full modular group S L 2 ( Z ) {\displaystyle SL_{2}(\mathbb {Z} )} with multiplier system χ η − 1 {\displaystyle \chi _{\eta }^{-1}} , where χ η {\displaystyle \chi _{\eta }} is the multiplier system for η ( z ) {\displaystyle \eta (z)} .

While a closed formula is not known for spt(n), there are Ramanujan-like congruences including

s p t ( 5 n + 4 ) ≡ 0 mod ( 5 ) {\displaystyle \mathrm {spt} (5n+4)\equiv 0\mod (5)} s p t ( 7 n + 5 ) ≡ 0 mod ( 7 ) {\displaystyle \mathrm {spt} (7n+5)\equiv 0\mod (7)} s p t ( 13 n + 6 ) ≡ 0 mod ( 13 ) . {\displaystyle \mathrm {spt} (13n+6)\equiv 0\mod (13).}

References

  1. Andrews, George E. (2008-11-01). "The number of smallest parts in the partitions of n". Journal für die Reine und Angewandte Mathematik. 2008 (624): 133–142. doi:10.1515/CRELLE.2008.083. ISSN 1435-5345. S2CID 123142859. /wiki/George_Andrews_(mathematician)