In mathematics, the bar complex, also called the bar resolution, bar construction, standard resolution, or standard complex, is a way of constructing resolutions in homological algebra. It was first introduced for the special case of algebras over a commutative ring by Samuel Eilenberg and Saunders Mac Lane (1953) and Henri Cartan and Eilenberg (1956, IX.6) and has since been generalized in many ways. The name "bar complex" comes from the fact that Eilenberg & Mac Lane (1953) used a vertical bar | as a shortened form of the tensor product ⊗ {\displaystyle \otimes } in their notation for the complex.
Definition
Let R {\displaystyle R} be an algebra over a field k {\displaystyle k} , let M 1 {\displaystyle M_{1}} be a right R {\displaystyle R} -module, and let M 2 {\displaystyle M_{2}} be a left R {\displaystyle R} -module. Then, one can form the bar complex Bar R ( M 1 , M 2 ) {\displaystyle \operatorname {Bar} _{R}(M_{1},M_{2})} given by
⋯ → M 1 ⊗ k R ⊗ k R ⊗ k M 2 → M 1 ⊗ k R ⊗ k M 2 → M 1 ⊗ k M 2 → 0 , {\displaystyle \cdots \rightarrow M_{1}\otimes _{k}R\otimes _{k}R\otimes _{k}M_{2}\rightarrow M_{1}\otimes _{k}R\otimes _{k}M_{2}\rightarrow M_{1}\otimes _{k}M_{2}\rightarrow 0\,,}with the differential
d ( m 1 ⊗ r 1 ⊗ ⋯ ⊗ r n ⊗ m 2 ) = m 1 r 1 ⊗ ⋯ ⊗ r n ⊗ m 2 + ∑ i = 1 n − 1 ( − 1 ) i m 1 ⊗ r 1 ⊗ ⋯ ⊗ r i r i + 1 ⊗ ⋯ ⊗ r n ⊗ m 2 + ( − 1 ) n m 1 ⊗ r 1 ⊗ ⋯ ⊗ r n m 2 {\displaystyle {\begin{aligned}d(m_{1}\otimes r_{1}\otimes \cdots \otimes r_{n}\otimes m_{2})&=m_{1}r_{1}\otimes \cdots \otimes r_{n}\otimes m_{2}\\&+\sum _{i=1}^{n-1}(-1)^{i}m_{1}\otimes r_{1}\otimes \cdots \otimes r_{i}r_{i+1}\otimes \cdots \otimes r_{n}\otimes m_{2}+(-1)^{n}m_{1}\otimes r_{1}\otimes \cdots \otimes r_{n}m_{2}\end{aligned}}}Resolutions
The bar complex is useful because it provides a canonical way of producing (free) resolutions of modules over a ring. However, often these resolutions are very large, and can be prohibitively difficult to use for performing actual computations.
Free Resolution of a Module
Let M {\displaystyle M} be a left R {\displaystyle R} -module, with R {\displaystyle R} a unital k {\displaystyle k} -algebra. Then, the bar complex Bar R ( R , M ) {\displaystyle \operatorname {Bar} _{R}(R,M)} gives a resolution of M {\displaystyle M} by free left R {\displaystyle R} -modules. Explicitly, the complex is1
⋯ → R ⊗ k R ⊗ k R ⊗ k M → R ⊗ k R ⊗ k M → R ⊗ k M → 0 , {\displaystyle \cdots \rightarrow R\otimes _{k}R\otimes _{k}R\otimes _{k}M\rightarrow R\otimes _{k}R\otimes _{k}M\rightarrow R\otimes _{k}M\rightarrow 0\,,}This complex is composed of free left R {\displaystyle R} -modules, since each subsequent term is obtained by taking the free left R {\displaystyle R} -module on the underlying vector space of the previous term.
To see that this gives a resolution of M {\displaystyle M} , consider the modified complex
⋯ → R ⊗ k R ⊗ k R ⊗ k M → R ⊗ k R ⊗ k M → R ⊗ k M → M → 0 , {\displaystyle \cdots \rightarrow R\otimes _{k}R\otimes _{k}R\otimes _{k}M\rightarrow R\otimes _{k}R\otimes _{k}M\rightarrow R\otimes _{k}M\rightarrow M\rightarrow 0\,,}Then, the above bar complex being a resolution of M {\displaystyle M} is equivalent to this extended complex having trivial homology. One can show this by constructing an explicit homotopy h n : R ⊗ k n ⊗ k M → R ⊗ k ( n + 1 ) ⊗ k M {\displaystyle h_{n}:R^{\otimes _{k}n}\otimes _{k}M\to R^{\otimes _{k}(n+1)}\otimes _{k}M} between the identity and 0. This homotopy is given by
h n ( r 1 ⊗ ⋯ ⊗ r n ⊗ m ) = ∑ i = 1 n − 1 ( − 1 ) i + 1 r 1 ⊗ ⋯ ⊗ r i − 1 ⊗ 1 ⊗ r i ⊗ ⋯ ⊗ r n ⊗ m {\displaystyle {\begin{aligned}h_{n}(r_{1}\otimes \cdots \otimes r_{n}\otimes m)&=\sum _{i=1}^{n-1}(-1)^{i+1}r_{1}\otimes \cdots \otimes r_{i-1}\otimes 1\otimes r_{i}\otimes \cdots \otimes r_{n}\otimes m\end{aligned}}}One can similarly construct a resolution of a right R {\displaystyle R} -module N {\displaystyle N} by free right modules with the complex Bar R ( N , R ) {\displaystyle \operatorname {Bar} _{R}(N,R)} .
Notice that, in the case one wants to resolve R {\displaystyle R} as a module over itself, the above two complexes are the same, and actually give a resolution of R {\displaystyle R} by R {\displaystyle R} - R {\displaystyle R} -bimodules. This provides one with a slightly smaller resolution of R {\displaystyle R} by free R {\displaystyle R} - R {\displaystyle R} -bimodules than the naive option Bar R e ( R e , M ) {\displaystyle \operatorname {Bar} _{R^{e}}(R^{e},M)} . Here we are using the equivalence between R {\displaystyle R} - R {\displaystyle R} -bimodules and R e {\displaystyle R^{e}} -modules, where R e = R ⊗ R op {\displaystyle R^{e}=R\otimes R^{\operatorname {op} }} , see bimodules for more details.
The Normalized Bar Complex
The normalized (or reduced) standard complex replaces A ⊗ A ⊗ ⋯ ⊗ A ⊗ A {\displaystyle A\otimes A\otimes \cdots \otimes A\otimes A} with A ⊗ ( A / K ) ⊗ ⋯ ⊗ ( A / K ) ⊗ A {\displaystyle A\otimes (A/K)\otimes \cdots \otimes (A/K)\otimes A} .
See also
Notes
- Cartan, Henri; Eilenberg, Samuel (1956), Homological algebra, Princeton Mathematical Series, vol. 19, Princeton University Press, ISBN 978-0-691-04991-5, MR 0077480{{citation}}: CS1 maint: ignored ISBN errors (link)
- Eilenberg, Samuel; Mac Lane, Saunders (1953), "On the groups of H ( Π , n ) {\displaystyle H(\Pi ,n)} . I", Annals of Mathematics, Second Series, 58: 55–106, doi:10.2307/1969820, ISSN 0003-486X, JSTOR 1969820, MR 0056295
- Ginzburg, Victor (2005). "Lectures on Noncommutative Geometry". arXiv:math.AG/0506603.
- Weibel, Charles (1994), An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge: Cambridge University Press, ISBN 0-521-43500-5
References
Weibel 1994, p. 283. - Weibel, Charles (1994), An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge: Cambridge University Press, ISBN 0-521-43500-5 ↩