Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Strongly embedded subgroup
We don't have any images related to Strongly embedded subgroup yet.
We don't have any YouTube videos related to Strongly embedded subgroup yet.
We don't have any PDF documents related to Strongly embedded subgroup yet.
We don't have any Books related to Strongly embedded subgroup yet.
We don't have any archived web articles related to Strongly embedded subgroup yet.

In finite group theory, an area of abstract algebra, a strongly embedded subgroup of a finite group G is a proper subgroup H of even order such that H ∩ Hg has odd order whenever g is not in H. The Bender–Suzuki theorem, proved by Bender (1971) extending work of Suzuki (1962, 1964), classifies the groups G with a strongly embedded subgroup H. It states that either

  1. G has cyclic or generalized quaternion Sylow 2-subgroups and H contains the centralizer of an involution
  2. or G/O(G) has a normal subgroup of odd index isomorphic to one of the simple groups PSL2(q), Sz(q) or PSU3(q) where q≥4 is a power of 2 and H is O(G)NG(S) for some Sylow 2-subgroup S.

Peterfalvi (2000, part II) revised Suzuki's part of the proof.

Aschbacher (1974) extended Bender's classification to groups with a proper 2-generated core.