Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Sudan function
In mathematics, named after Gabriel Sudan

In the theory of computation, the Sudan function is an example of a function that is recursive, but not primitive recursive. This is also true of the better-known Ackermann function.

In 1926, David Hilbert conjectured that every computable function was primitive recursive. This was refuted by Gabriel Sudan and Wilhelm Ackermann — both his students — using different functions that were published in quick succession: Sudan in 1927, Ackermann in 1928.

The Sudan function is the earliest published example of a recursive function that is not primitive recursive.

We don't have any images related to Sudan function yet.
We don't have any YouTube videos related to Sudan function yet.
We don't have any PDF documents related to Sudan function yet.
We don't have any Books related to Sudan function yet.
We don't have any archived web articles related to Sudan function yet.

Definition

F 0 ( x , y ) = x + y F n + 1 ( x , 0 ) = x if  n ≥ 0 F n + 1 ( x , y + 1 ) = F n ( F n + 1 ( x , y ) , F n + 1 ( x , y ) + y + 1 ) if  n ≥ 0 {\displaystyle {\begin{array}{lll}F_{0}(x,y)&=x+y\\F_{n+1}(x,0)&=x&{\text{if }}n\geq 0\\F_{n+1}(x,y+1)&=F_{n}(F_{n+1}(x,y),F_{n+1}(x,y)+y+1)&{\text{if }}n\geq 0\\\end{array}}}

The last equation can be equivalently written as

F n + 1 ( x , y + 1 ) = F n ( F n + 1 ( x , y ) , F 0 ( F n + 1 ( x , y ) , y + 1 ) ) {\displaystyle {\begin{array}{lll}F_{n+1}(x,y+1)&=F_{n}(F_{n+1}(x,y),F_{0}(F_{n+1}(x,y),y+1))\\\end{array}}} .4

Computation

These equations can be used as rules of a term rewriting system (TRS).

The generalized function F ( x , y , n ) = d e f F n ( x , y ) {\displaystyle F(x,y,n){\stackrel {\mathrm {def} }{=}}F_{n}(x,y)} leads to the rewrite rules

(r1) F ( x , y , 0 ) → x + y (r2) F ( x , 0 , n + 1 ) → x (r3) F ( x , y + 1 , n + 1 ) → F ( F ( x , y , n + 1 ) , F ( F ( x , y , n + 1 ) , y + 1 , 0 ) , n ) {\displaystyle {\begin{array}{lll}{\text{(r1)}}&F(x,y,0)&\rightarrow x+y\\{\text{(r2)}}&F(x,0,n+1)&\rightarrow x\\{\text{(r3)}}&F(x,y+1,n+1)&\rightarrow F(F(x,y,n+1),F(F(x,y,n+1),y+1,0),n)\\\end{array}}}

At each reduction step the rightmost innermost occurrence of F is rewritten, by application of one of the rules (r1) - (r3).

Calude (1988) gives an example: compute F ( 2 , 2 , 1 ) → ∗ 12 {\displaystyle F(2,2,1)\rightarrow _{*}12} .5

The reduction sequence is6

F ( 2 , 2 , 1 ) _ {\displaystyle {\underline {F(2,2,1)}}}
     → r 3 F ( F ( 2 , 1 , 1 ) , F ( F ( 2 , 1 , 1 ) _ , 2 , 0 ) , 0 ) {\displaystyle \rightarrow _{r3}F(F(2,1,1),F({\underline {F(2,1,1)}},2,0),0)}
     → r 3 F ( F ( 2 , 1 , 1 ) , F ( F ( F ( 2 , 0 , 1 ) , F ( F ( 2 , 0 , 1 ) _ , 1 , 0 ) , 0 ) , 2 , 0 ) , 0 ) {\displaystyle \rightarrow _{r3}F(F(2,1,1),F(F(F(2,0,1),F({\underline {F(2,0,1)}},1,0),0),2,0),0)}
     → r 2 F ( F ( 2 , 1 , 1 ) , F ( F ( F ( 2 , 0 , 1 ) , F ( 2 , 1 , 0 ) _ , 0 ) , 2 , 0 ) , 0 ) {\displaystyle \rightarrow _{r2}F(F(2,1,1),F(F(F(2,0,1),{\underline {F(2,1,0)}},0),2,0),0)}
     → r 1 F ( F ( 2 , 1 , 1 ) , F ( F ( F ( 2 , 0 , 1 ) _ , 3 , 0 ) , 2 , 0 ) , 0 ) {\displaystyle \rightarrow _{r1}F(F(2,1,1),F(F({\underline {F(2,0,1)}},3,0),2,0),0)}
     → r 2 F ( F ( 2 , 1 , 1 ) , F ( F ( 2 , 3 , 0 ) _ , 2 , 0 ) , 0 ) {\displaystyle \rightarrow _{r2}F(F(2,1,1),F({\underline {F(2,3,0)}},2,0),0)}
     → r 1 F ( F ( 2 , 1 , 1 ) , F ( 5 , 2 , 0 ) _ , 0 ) {\displaystyle \rightarrow _{r1}F(F(2,1,1),{\underline {F(5,2,0)}},0)}
     → r 1 F ( F ( 2 , 1 , 1 ) _ , 7 , 0 ) {\displaystyle \rightarrow _{r1}F({\underline {F(2,1,1)}},7,0)}
     → r 3 F ( F ( F ( 2 , 0 , 1 ) , F ( F ( 2 , 0 , 1 ) _ , 1 , 0 ) , 0 ) , 7 , 0 ) {\displaystyle \rightarrow _{r3}F(F(F(2,0,1),F({\underline {F(2,0,1)}},1,0),0),7,0)}
     → r 2 F ( F ( F ( 2 , 0 , 1 ) , F ( 2 , 1 , 0 ) _ , 0 ) , 7 , 0 ) {\displaystyle \rightarrow _{r2}F(F(F(2,0,1),{\underline {F(2,1,0)}},0),7,0)}
     → r 1 F ( F ( F ( 2 , 0 , 1 ) _ , 3 , 0 ) , 7 , 0 ) {\displaystyle \rightarrow _{r1}F(F({\underline {F(2,0,1)}},3,0),7,0)}
     → r 2 F ( F ( 2 , 3 , 0 ) _ , 7 , 0 ) {\displaystyle \rightarrow _{r2}F({\underline {F(2,3,0)}},7,0)}
     → r 1 F ( 5 , 7 , 0 ) _ {\displaystyle \rightarrow _{r1}{\underline {F(5,7,0)}}}
     → r 1 12 {\displaystyle \rightarrow _{r1}12}

Value tables

Values of F0

F0(xy) = x + y

y \ x012345678910
0012345678910
11234567891011
223456789101112
3345678910111213
44567891011121314
556789101112131415
6678910111213141516
77891011121314151617
889101112131415161718
9910111213141516171819
101011121314151617181920

Values of F1

F1(xy) = 2y · (x + 2) − y − 2

y \ x012345678910
0012345678910
113579111315171921
248121620242832364044
31119273543515967758391
42642587490106122138154170186
55789121153185217249281313345377
6120184248312376440504568632696760
724737550363175988710151143127113991527
8502758101412701526178220382294255028063062
910131525203725493061357340854597510956216133
1020363060408451086132715681809204102281125212276

Values of F2

y \ x01234567
001234567
x
1F1 (F2(0, 0),  F2(0, 0)+1)F1 (F2(1, 0),  F2(1, 0)+1)F1 (F2(2, 0),  F2(2, 0)+1)F1 (F2(3, 0),  F2(3, 0)+1)F1 (F2(4, 0),  F2(4, 0)+1)F1 (F2(5, 0),  F2(5, 0)+1)F1 (F2(6, 0),  F2(6, 0)+1)F1 (F2(7, 0),  F2(7, 0)+1)
F1(0, 1)F1(1, 2)F1(2, 3)F1(3, 4)F1(4, 5)F1(5, 6)F1(6, 7)F1(7, 8)
18277418544010152294
2x+1 · (x + 2) − x − 3≈ 10lg 2·(x+1) + lg(x+2)
2F1 (F2(0, 1),  F2(0, 1)+2)F1 (F2(1, 1),  F2(1, 1)+2)F1 (F2(2, 1),  F2(2, 1)+2)F1 (F2(3, 1),  F2(3, 1)+2)F1 (F2(4, 1),  F2(4, 1)+2)F1 (F2(5, 1),  F2(5, 1)+2)F1 (F2(6, 1),  F2(6, 1)+2)F1 (F2(7, 1),  F2(7, 1)+2)
F1(1, 3)F1(8, 10)F1(27, 29)F1(74, 76)F1(185, 187)F1(440, 442)F1(1015, 1017)F1(2294, 2296)
191022815569256417≈ 5,742397643 · 1024≈ 3,668181327 · 1058≈ 5,019729940 · 10135≈ 1,428323374 · 10309≈ 3,356154368 · 10694
22x+1·(x+2) − x − 1 · (2x+1·(x+2) − x − 1) − (2x+1·(x+2) − x + 1)≈ 10lg 2 · (2x+1·(x+2) − x − 1) + lg(2x+1·(x+2) − x − 1) ≈ 10lg 2 · 2x+1·(x+2) + lg(2x+1·(x+2)) ≈ 10lg 2 · (2x+1·(x+2)) = 1010lg lg 2 + lg 2·(x+1) + lg(x+2) ≈ 1010lg 2·(x+1) + lg(x+2)
3F1 (F2(0, 2),  F2(0, 2)+3)F1 (F2(1, 2),  F2(1, 2)+3)F1 (F2(2, 2),  F2(2, 2)+3)F1 (F2(3, 2),  F2(3, 2)+3)F1 (F2(4, 2),  F2(4, 2)+3)F1 (F2(5, 2),  F2(5, 2)+3)F1 (F2(6, 2),  F2(6, 2)+3)F1 (F2(7, 2),  F2(7, 2)+3)
F1(F1(1,3),  F1(1,3)+3)F1(F1(8,10),  F1(8,10)+3)F1(F1(27,29),  F1(27,29)+3)F1(F1(74,76),  F1(74,76)+3)F1(F1(185,187),  F1(185,187)+3)F1(F1(440,442),  F1(440,442)+3)F1(F1(1015,1017),  F1(1015,1017)+3)F1(F1(2294,2297),  F1(2294,2297)+3)
F1(19, 22)F1(10228, 10231)F1(15569256417,15569256420)F1(≈6·1024, ≈6·1024)F1(≈4·1058, ≈4·1058)F1(≈5·10135, ≈5·10135)F1(≈10309, ≈10309)F1(≈3·10694, ≈3·10694)
88080360≈ 7,04 · 103083≈ 7,82 · 104686813201≈ 101,72·1024≈ 101,10·1058≈ 101,51·10135≈ 104,30·10308≈ 101,01·10694
longer expression, starts with 222x+1 an, ≈ 101010lg 2·(x+1) + lg(x+2)
4F1 (F2(0, 3),  F2(0, 3)+4)F1 (F2(1, 3),  F2(1, 3)+4)F1 (F2(2, 3),  F2(2, 3)+4)F1 (F2(3, 3),  F2(3, 3)+4)F1 (F2(4, 3),  F2(4, 3)+4)F1 (F2(5, 3),  F2(5, 3)+4)F1 (F2(6, 3),  F2(6, 3)+4)F1 (F2(7, 3),  F2(7, 3)+4)
F1 (F1(19, 22),  F1(19, 22)+4)F1 (F1(10228,  10231),  F1(10228,  10231)+4)F1 (F1(15569256417,  15569256420),  F1(15569256417,  15569256420)+4)F1 (F1(≈5,74·1024, ≈5,74·1024),F1(≈5,74·1024, ≈5,74·1024))F1 (F1(≈3,67·1058, ≈3,67·1058),F1(≈3,67·1058, ≈3,67·1058))F1 (F1(≈5,02·10135, ≈5,02·10135),F1(≈5,02·10135, ≈5,02·10135))F1 (F1(≈1,43·10309, ≈1,43·10309),F1(≈1,43·10309, ≈1,43·10309))F1 (F1(≈3,36·10694, ≈3,36·10694),F1(≈3,36·10694, ≈3,36·10694))
F1(88080360,88080364)F1(10230·210231−10233,10230·210231−10229)
≈ 3,5 · 1026514839
much longer expression, starts with 2222x+1 an, ≈ 10101010lg 2·(x+1) + lg(x+2)

Values of F3

y \ x01234
001234
x
1F2 (F3(0, 0),  F3(0, 0)+1)F2 (F3(1, 0),  F3(1, 0)+1)F2 (F3(2, 0),  F3(2, 0)+1)F2 (F3(3, 0),  F3(3, 0)+1)F2 (F3(4, 0),  F3(4, 0)+1)
F2(0, 1)F2(1, 2)F2(2, 3)F2(3, 4)F2(4, 5)
110228≈ 7,82 · 104686813201
No closed expressions possible within the framework of normal mathematical notation
2F3 (F4(0, 1),  F4(0, 1)+2)F3 (F4(1, 1),  F4(1, 1)+2)F3 (F4(2, 1),  F4(2, 1)+2)F3 (F4(3, 1),  F4(3, 1)+2)F3 (F4(4, 1),  F4(4, 1)+2)
F3 (1, 3)F3 (10228, 10230)F3 (≈104686813201, ≈104686813201)
 
No closed expressions possible within the framework of normal mathematical notation

Notes and references

Bibliography

  • Sudan, Gabriel (1927). "Sur le nombre transfini ωω". Bulletin mathématique de la Société Roumaine des Sciences. 30: 11–30. JFM 53.0171.01. JSTOR 43769875. Jbuch 53, 171
  • OEIS: A260003, A260004

References

  1. Sudan 1927. - Sudan, Gabriel (1927). "Sur le nombre transfini ωω". Bulletin mathématique de la Société Roumaine des Sciences. 30: 11–30. JFM 53.0171.01. JSTOR 43769875. Jbuch 53, 171 https://zbmath.org/?format=complete&q=an:53.0171.01

  2. Ackermann 1928. - Ackermann, Wilhelm (1928). "Zum Hilbertschen Aufbau der reellen Zahlen". Mathematische Annalen. 99: 118–133. doi:10.1007/BF01459088. JFM 54.0056.06. S2CID 123431274. http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PPN=PPN235181684_0099&DMDID=DMDLOG_0009

  3. Calude, Marcus & Tevy 1979. - Calude, Cristian; Marcus, Solomon; Tevy, Ionel (1979). "The first example of a recursive function which is not primitive recursive". Historia Mathematica. 6 (4): 380–384. doi:10.1016/0315-0860(79)90024-7. https://doi.org/10.1016%2F0315-0860%2879%2990024-7

  4. Calude 1988, p. 92. - Calude, Cristian (1988). Theories of Computational Complexity. Amsterdam: North-Holland. ISBN 978-0-444-70356-9. https://www.sciencedirect.com/science/book/9780444703569

  5. Calude 1988, pp. 92–95. - Calude, Cristian (1988). Theories of Computational Complexity. Amsterdam: North-Holland. ISBN 978-0-444-70356-9. https://www.sciencedirect.com/science/book/9780444703569

  6. The rightmost innermost occurrences of F are underlined.