Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Tin(II) sulfide
Chemical compound

Tin(II) sulfide is an inorganic compound with the chemical formula is SnS. A black or brown solid, it occurs as the rare mineral herzenbergite (α-SnS).It is insoluble in water but dissolves with degradation in concentrated hydrochloric acid. Tin(II) sulfide is insoluble in ammonium sulfide.

We don't have any images related to Tin(II) sulfide yet.
We don't have any YouTube videos related to Tin(II) sulfide yet.
We don't have any PDF documents related to Tin(II) sulfide yet.
We don't have any Books related to Tin(II) sulfide yet.
We don't have any archived web articles related to Tin(II) sulfide yet.

Synthesis

The preparation of tin(II) sulfide has been extensively investigated, and the direct reaction of the elements is inefficient.1 Instead, molten potassium thiocyanate reliably reacts with stannic oxide to give SnS at 450 °C:2

SnO2 + 2 KSCN → SnS + K2S + 2CO + N2

SnS also forms when aqueous solutions of tin(II) salts are treated with hydrogen sulfide.3 This conversion is a step in qualitative inorganic analysis.

At cryogenic temperatures, stannous chloride dissolves in liquid hydrogen sulfide. It then decomposes to the sulfide, but only slowly.4

Structure

At temperatures above 905 K, SnS undergoes a second order phase transition to β-SnS (space group: Cmcm, No. 63).5 A new polymorph of SnS exists based upon the cubic crystal system, known as π-SnS (space group: P213, No. 198).678 Herzenbergite (α-SnS) can be exfoliated to form layered structure similar to that of black phosphorus, featuring 3-coordinate Sn and S centers.910 Analogous to black phosphorus, tin(II) sulfide can be ultrasonically exfoliated in liquids to produce atomically thin semiconducting SnS sheets that have a wider optical band gap (>1.5 eV) compared to the bulk crystal.11

Photovoltaic applications

Tin(II) sulfide has been evaluated as a candidate for thin-film solar cells. Currently, both cadmium telluride and CIGS (copper indium gallium selenide) are used as p-type absorber layers, but they are formulated from toxic, scarce constituents.12 Tin(II) sulfide, by contrast, is formed from cheap, earth-abundant elements, and is nontoxic. This material also has a high optical absorption coefficient, p-type conductivity, and a mid range direct band gap of 1.3-1.4 eV, required electronic properties for this type of absorber layer.13 Based on the a detailed balance calculation using the material bandgap, the power conversion efficiency of a solar cell utilizing a tin(II) sulfide absorber layer could be as high as 32%, which is comparable to crystalline silicon.14 Finally, Tin(II) sulfide is stable in both alkaline and acidic conditions.15 All aforementioned characteristics suggest tin(II) sulfide as an interesting material to be used as a solar cell absorber layer.

Power conversion efficiencies for tin(II) sulfide thin films in photovoltaic cells are less than 5%.16 Barriers for use include a low open circuit voltage and an inability to realize many of the above properties due to challenges in fabrication.17

References

  1. Price, Louise S.; Parkin, Ivan P.; Field, Mark N.; Hardy, Amanda M. E.; Clark, Robin J. H.; Hibbert, Thomas G.; Molloy, Kieran C. (27 Jan 2000) [4 Oct 1999]. "Atmospheric pressure chemical vapour deposition of tin(II) sulfide films on glass substrates from Bun3SnO2CCF3 with hydrogen sulfide". Journal of Materials Chemistry. 10 (2): 527. doi:10.1039/a907939d – via CiteSeerX. /wiki/Doi_(identifier)

  2. Baudler, M. (1963) [1960]. "Tin and lead". In Brauer, Georg (ed.). Handbook of Preparative Inorganic Chemistry. Vol. 1. Translated by Riley, Reed F. (2nd ed.). New York: Academic. pp. 739–740. LCCN 63-14307. /wiki/LCCN_(identifier)

  3. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1233. ISBN 978-0-08-037941-8. 978-0-08-037941-8

  4. Quam, G. N. (8 Jan 1925) [5 Sept 1924]. "A study of reactions in liquid hydrogen sulfide". Journal of the American Chemical Society. 47: 105–106. doi:10.1021/ja01678a014. (Excerpted from a PhD thesis at Iowa State College.) "The chlorides of tin and phosphorus were all soluble, and slow decomposition resulted in the formation of the respective sulfides." See also Table 1, wherein "Stannous chloride" and "Stannic chloride" are both listed as "Soluble and reactive". /wiki/Doi_(identifier)

  5. Wiedemeier, Heribert; von Schnering, Hans Georg (1978-01-01). "Refinement of the structures of GeS, GeSe, SnS and SnSe : Zeitschrift für Kristallographie". Zeitschrift für Kristallographie. 148 (3–4): 295–303. doi:10.1524/zkri.1978.148.3-4.295. S2CID 53314748. /wiki/Doi_(identifier)

  6. Miranti, Retno; Septianto, Ricky Dwi; Kikitsu, Tomoka; Hashizume, Daisuke; Matsushita, Nobuhiro; Iwasa, Yoshihiro; Bisri, Satria Zulkarnaen (2022-03-24). "π-SnS Colloidal Nanocrystals with Size-Dependent Band Gaps". The Journal of Physical Chemistry C. 126 (11): 5323–5332. doi:10.1021/acs.jpcc.2c00266. ISSN 1932-7447. https://pubs.acs.org/doi/10.1021/acs.jpcc.2c00266

  7. Rabkin, Alexander; Samuha, Shmuel; Abutbul, Ran E.; Ezersky, Vladimir; Meshi, Louisa; Golan, Yuval (2015-03-11). "New Nanocrystalline Materials: A Previously Unknown Simple Cubic Phase in the SnS Binary System". Nano Letters. 15 (3): 2174–2179. Bibcode:2015NanoL..15.2174R. doi:10.1021/acs.nanolett.5b00209. ISSN 1530-6984. PMID 25710674. /wiki/Bibcode_(identifier)

  8. Abutbul, R. E.; Segev, E.; Zeiri, L.; Ezersky, V.; Makov, G.; Golan, Y. (2016-01-12). "Synthesis and properties of nanocrystalline π-SnS – a new cubic phase of tin sulphide". RSC Advances. 6 (7): 5848–5855. Bibcode:2016RSCAd...6.5848A. doi:10.1039/c5ra23092f. ISSN 2046-2069. /wiki/Bibcode_(identifier)

  9. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1233. ISBN 978-0-08-037941-8. 978-0-08-037941-8

  10. Wiedemeier, Heribert; von Schnering, Hans Georg (1978-01-01). "Refinement of the structures of GeS, GeSe, SnS and SnSe : Zeitschrift für Kristallographie". Zeitschrift für Kristallographie. 148 (3–4): 295–303. doi:10.1524/zkri.1978.148.3-4.295. S2CID 53314748. /wiki/Doi_(identifier)

  11. Brent; et al. (2015). "Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV–VI Main Group Two-Dimensional Atomic Crystals". J. Am. Chem. Soc. 137 (39): 12689–12696. Bibcode:2015JAChS.13712689B. doi:10.1021/jacs.5b08236. PMID 26352047. https://doi.org/10.1021%2Fjacs.5b08236

  12. Ginley, D.; Green, M.A. (2008). "Solar energy conversion towards 1 terawatt". MRS Bulletin. 33 (4): 355–364. doi:10.1557/mrs2008.71. https://doi.org/10.1557%2Fmrs2008.71

  13. Andrade-Arvizu, Jacob A.; Courel-Piedrahita, Maykel; Vigil-Galán, Osvaldo (2015-04-14). "SnS-based thin film solar cells: perspectives over the last 25 years". Journal of Materials Science: Materials in Electronics. 26 (7): 4541–4556. doi:10.1007/s10854-015-3050-z. ISSN 0957-4522. S2CID 137524157. /wiki/Doi_(identifier)

  14. Nair, P. K.; Garcia-Angelmo, A. R.; Nair, M. T. S. (2016-01-01). "Cubic and orthorhombic SnS thin-film absorbers for tin sulfide solar cells". Physica Status Solidi A. 213 (1): 170–177. Bibcode:2016PSSAR.213..170N. doi:10.1002/pssa.201532426. ISSN 1862-6319. S2CID 124780995. /wiki/Bibcode_(identifier)

  15. Sato, N.; Ichimura, E. (2003). "Characterization of electrical properties of SnS thin films prepared by the electrochemical deposition method". Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. A.

  16. Jaramillo, R.; Steinmann, V.; Yang, C.; Chakraborty, R.; Poindexter, J. R. (2015). "Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition". J. Vis. Exp. (99): e52705. doi:10.3791/52705. PMC 4542955. PMID 26067454. https://www.jove.com/video/52705/making-record-efficiency-sns-solar-cells-thermal-evaporation-atomic

  17. Nair, P. K.; Garcia-Angelmo, A. R.; Nair, M. T. S. (2016-01-01). "Cubic and orthorhombic SnS thin-film absorbers for tin sulfide solar cells". Physica Status Solidi A. 213 (1): 170–177. Bibcode:2016PSSAR.213..170N. doi:10.1002/pssa.201532426. ISSN 1862-6319. S2CID 124780995. /wiki/Bibcode_(identifier)