Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Titchmarsh convolution theorem

The Titchmarsh convolution theorem describes the properties of the support of the convolution of two functions. It was proven by Edward Charles Titchmarsh in 1926.

We don't have any images related to Titchmarsh convolution theorem yet.
We don't have any YouTube videos related to Titchmarsh convolution theorem yet.
We don't have any PDF documents related to Titchmarsh convolution theorem yet.
We don't have any Books related to Titchmarsh convolution theorem yet.
We don't have any archived web articles related to Titchmarsh convolution theorem yet.

Titchmarsh convolution theorem

If φ ( t ) {\textstyle \varphi (t)\,} and ψ ( t ) {\textstyle \psi (t)} are integrable functions, such that

φ ∗ ψ = ∫ 0 x φ ( t ) ψ ( x − t ) d t = 0 {\displaystyle \varphi *\psi =\int _{0}^{x}\varphi (t)\psi (x-t)\,dt=0}

almost everywhere in the interval 0 < x < κ {\displaystyle 0<x<\kappa \,} , then there exist λ ≥ 0 {\displaystyle \lambda \geq 0} and μ ≥ 0 {\displaystyle \mu \geq 0} satisfying λ + μ ≥ κ {\displaystyle \lambda +\mu \geq \kappa } such that φ ( t ) = 0 {\displaystyle \varphi (t)=0\,} almost everywhere in 0 < t < λ {\displaystyle 0<t<\lambda } and ψ ( t ) = 0 {\displaystyle \psi (t)=0\,} almost everywhere in 0 < t < μ . {\displaystyle 0<t<\mu .}

As a corollary, if the integral above is 0 for all x > 0 , {\textstyle x>0,} then either φ {\textstyle \varphi \,} or ψ {\textstyle \psi } is almost everywhere 0 in the interval [ 0 , + ∞ ) . {\textstyle [0,+\infty ).} Thus the convolution of two functions on [ 0 , + ∞ ) {\textstyle [0,+\infty )} cannot be identically zero unless at least one of the two functions is identically zero.

As another corollary, if φ ∗ ψ ( x ) = 0 {\displaystyle \varphi *\psi (x)=0} for all x ∈ [ 0 , κ ] {\displaystyle x\in [0,\kappa ]} and one of the function φ {\displaystyle \varphi } or ψ {\displaystyle \psi } is almost everywhere not null in this interval, then the other function must be null almost everywhere in [ 0 , κ ] {\displaystyle [0,\kappa ]} .

The theorem can be restated in the following form:

Let φ , ψ ∈ L 1 ( R ) {\displaystyle \varphi ,\psi \in L^{1}(\mathbb {R} )} . Then inf supp ⁡ φ ∗ ψ = inf supp ⁡ φ + inf supp ⁡ ψ {\displaystyle \inf \operatorname {supp} \varphi \ast \psi =\inf \operatorname {supp} \varphi +\inf \operatorname {supp} \psi } if the left-hand side is finite. Similarly, sup supp ⁡ φ ∗ ψ = sup supp ⁡ φ + sup supp ⁡ ψ {\displaystyle \sup \operatorname {supp} \varphi \ast \psi =\sup \operatorname {supp} \varphi +\sup \operatorname {supp} \psi } if the right-hand side is finite.

Above, supp {\displaystyle \operatorname {supp} } denotes the support of a function f (i.e., the closure of the complement of f−1(0)) and inf {\displaystyle \inf } and sup {\displaystyle \sup } denote the infimum and supremum. This theorem essentially states that the well-known inclusion supp ⁡ φ ∗ ψ ⊂ supp ⁡ φ + supp ⁡ ψ {\displaystyle \operatorname {supp} \varphi \ast \psi \subset \operatorname {supp} \varphi +\operatorname {supp} \psi } is sharp at the boundary.

The higher-dimensional generalization in terms of the convex hull of the supports was proven by Jacques-Louis Lions in 1951:2

If φ , ψ ∈ E ′ ( R n ) {\displaystyle \varphi ,\psi \in {\mathcal {E}}'(\mathbb {R} ^{n})} , then c . h . ⁡ supp ⁡ φ ∗ ψ = c . h . ⁡ supp ⁡ φ + c . h . ⁡ supp ⁡ ψ {\displaystyle \operatorname {c.h.} \operatorname {supp} \varphi \ast \psi =\operatorname {c.h.} \operatorname {supp} \varphi +\operatorname {c.h.} \operatorname {supp} \psi }

Above, c . h . {\displaystyle \operatorname {c.h.} } denotes the convex hull of the set and E ′ ( R n ) {\displaystyle {\mathcal {E}}'(\mathbb {R} ^{n})} denotes the space of distributions with compact support.

The original proof by Titchmarsh uses complex-variable techniques, and is based on the Phragmén–Lindelöf principle, Jensen's inequality, Carleman's theorem, and Valiron's theorem. The theorem has since been proven several more times, typically using either real-variable345 or complex-variable678 methods. Gian-Carlo Rota has stated that no proof yet addresses the theorem's underlying combinatorial structure, which he believes is necessary for complete understanding.9

References

  1. Titchmarsh, E. C. (1926). "The Zeros of Certain Integral Functions". Proceedings of the London Mathematical Society. s2-25 (1): 283–302. doi:10.1112/plms/s2-25.1.283. http://doi.wiley.com/10.1112/plms/s2-25.1.283

  2. Lions, Jacques-Louis (1951). "Supports de produits de composition". Comptes rendus. 232 (17): 1530–1532. /wiki/Comptes_rendus

  3. Doss, Raouf (1988). "An elementary proof of Titchmarsh's convolution theorem" (PDF). Proceedings of the American Mathematical Society. 104 (1). https://www.ams.org/journals/proc/1988-104-01/S0002-9939-1988-0958063-5/S0002-9939-1988-0958063-5.pdf

  4. Kalisch, G. K. (1962-10-01). "A functional analysis proof of titchmarsh's theorem on convolution". Journal of Mathematical Analysis and Applications. 5 (2): 176–183. doi:10.1016/S0022-247X(62)80002-X. ISSN 0022-247X. https://doi.org/10.1016%2FS0022-247X%2862%2980002-X

  5. Mikusiński, J. (1953). "A new proof of Titchmarsh's theorem on convolution". Studia Mathematica. 13 (1): 56–58. doi:10.4064/sm-13-1-56-58. ISSN 0039-3223. https://doi.org/10.4064%2Fsm-13-1-56-58

  6. Crum, M. M. (1941). "On the resultant of two functions". The Quarterly Journal of Mathematics. os-12 (1): 108–111. doi:10.1093/qmath/os-12.1.108. ISSN 0033-5606. https://academic.oup.com/qjmath/article-lookup/doi/10.1093/qmath/os-12.1.108

  7. Dufresnoy, Jacques (1947). "Sur le produit de composition de deux fonctions". Comptes rendus. 225: 857–859. /wiki/Comptes_rendus

  8. Boas, Ralph P. (1954). Entire functions. New York: Academic Press. ISBN 0-12-108150-8. OCLC 847696. {{cite book}}: ISBN / Date incompatibility (help) 0-12-108150-8

  9. Rota, Gian-Carlo (1998-06-01). "Ten Mathematics Problems I will never solve". Mitteilungen der Deutschen Mathematiker-Vereinigung (in German). 6 (2): 45–52. doi:10.1515/dmvm-1998-0215. ISSN 0942-5977. S2CID 120569917. https://doi.org/10.1515%2Fdmvm-1998-0215