In linear algebra, a Toeplitz matrix, named after Otto Toeplitz, is a matrix with constant values along each descending diagonal from left to right. For an n × n Toeplitz matrix A, each element satisfies Ai,j = ai−j, meaning the value depends only on the difference between row and column indices. Such matrices have a structure where every diagonal parallel to the main diagonal contains identical elements. Note that a Toeplitz matrix is not necessarily square. This property makes Toeplitz matrices useful in various applications including signal processing and system theory.
Solving a Toeplitz system
A matrix equation of the form
A x = b {\displaystyle Ax=b}is called a Toeplitz system if A {\displaystyle A} is a Toeplitz matrix. If A {\displaystyle A} is an n × n {\displaystyle n\times n} Toeplitz matrix, then the system has at most only 2 n − 1 {\displaystyle 2n-1} unique values, rather than n 2 {\displaystyle n^{2}} . We might therefore expect that the solution of a Toeplitz system would be easier, and indeed that is the case.
Toeplitz systems can be solved by algorithms such as the Schur algorithm or the Levinson algorithm in O ( n 2 ) {\displaystyle O(n^{2})} time.12 Variants of the latter have been shown to be weakly stable (i.e. they exhibit numerical stability for well-conditioned linear systems).3 The algorithms can also be used to find the determinant of a Toeplitz matrix in O ( n 2 ) {\displaystyle O(n^{2})} time.4
A Toeplitz matrix can also be decomposed (i.e. factored) in O ( n 2 ) {\displaystyle O(n^{2})} time.5 The Bareiss algorithm for an LU decomposition is stable.6 An LU decomposition gives a quick method for solving a Toeplitz system, and also for computing the determinant.
Properties
- An n × n {\displaystyle n\times n} Toeplitz matrix may be defined as a matrix A {\displaystyle A} where A i , j = c i − j {\displaystyle A_{i,j}=c_{i-j}} , for constants c 1 − n , … , c n − 1 {\displaystyle c_{1-n},\ldots ,c_{n-1}} . The set of n × n {\displaystyle n\times n} Toeplitz matrices is a subspace of the vector space of n × n {\displaystyle n\times n} matrices (under matrix addition and scalar multiplication).
- Two Toeplitz matrices may be added in O ( n ) {\displaystyle O(n)} time (by storing only one value of each diagonal) and multiplied in O ( n 2 ) {\displaystyle O(n^{2})} time.
- Toeplitz matrices are persymmetric. Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric.
- Toeplitz matrices are also closely connected with Fourier series, because the multiplication operator by a trigonometric polynomial, compressed to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix.
- Toeplitz matrices commute asymptotically. This means they diagonalize in the same basis when the row and column dimension tends to infinity.
- For symmetric Toeplitz matrices, there is the decomposition
- The inverse of a nonsingular symmetric Toeplitz matrix has the representation
Discrete convolution
The convolution operation can be constructed as a matrix multiplication, where one of the inputs is converted into a Toeplitz matrix. For example, the convolution of h {\displaystyle h} and x {\displaystyle x} can be formulated as:
y = h ∗ x = [ h 1 0 ⋯ 0 0 h 2 h 1 ⋮ ⋮ h 3 h 2 ⋯ 0 0 ⋮ h 3 ⋯ h 1 0 h m − 1 ⋮ ⋱ h 2 h 1 h m h m − 1 ⋮ h 2 0 h m ⋱ h m − 2 ⋮ 0 0 ⋯ h m − 1 h m − 2 ⋮ ⋮ h m h m − 1 0 0 0 ⋯ h m ] [ x 1 x 2 x 3 ⋮ x n ] {\displaystyle y=h\ast x={\begin{bmatrix}h_{1}&0&\cdots &0&0\\h_{2}&h_{1}&&\vdots &\vdots \\h_{3}&h_{2}&\cdots &0&0\\\vdots &h_{3}&\cdots &h_{1}&0\\h_{m-1}&\vdots &\ddots &h_{2}&h_{1}\\h_{m}&h_{m-1}&&\vdots &h_{2}\\0&h_{m}&\ddots &h_{m-2}&\vdots \\0&0&\cdots &h_{m-1}&h_{m-2}\\\vdots &\vdots &&h_{m}&h_{m-1}\\0&0&0&\cdots &h_{m}\end{bmatrix}}{\begin{bmatrix}x_{1}\\x_{2}\\x_{3}\\\vdots \\x_{n}\end{bmatrix}}} y T = [ h 1 h 2 h 3 ⋯ h m − 1 h m ] [ x 1 x 2 x 3 ⋯ x n 0 0 0 ⋯ 0 0 x 1 x 2 x 3 ⋯ x n 0 0 ⋯ 0 0 0 x 1 x 2 x 3 … x n 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 ⋯ 0 0 x 1 ⋯ x n − 2 x n − 1 x n 0 0 ⋯ 0 0 0 x 1 ⋯ x n − 2 x n − 1 x n ] . {\displaystyle y^{T}={\begin{bmatrix}h_{1}&h_{2}&h_{3}&\cdots &h_{m-1}&h_{m}\end{bmatrix}}{\begin{bmatrix}x_{1}&x_{2}&x_{3}&\cdots &x_{n}&0&0&0&\cdots &0\\0&x_{1}&x_{2}&x_{3}&\cdots &x_{n}&0&0&\cdots &0\\0&0&x_{1}&x_{2}&x_{3}&\ldots &x_{n}&0&\cdots &0\\\vdots &&\vdots &\vdots &\vdots &&\vdots &\vdots &&\vdots \\0&\cdots &0&0&x_{1}&\cdots &x_{n-2}&x_{n-1}&x_{n}&0\\0&\cdots &0&0&0&x_{1}&\cdots &x_{n-2}&x_{n-1}&x_{n}\end{bmatrix}}.}This approach can be extended to compute autocorrelation, cross-correlation, moving average etc.
Infinite Toeplitz matrix
Main article: Toeplitz operator
A bi-infinite Toeplitz matrix (i.e. entries indexed by Z × Z {\displaystyle \mathbb {Z} \times \mathbb {Z} } ) A {\displaystyle A} induces a linear operator on ℓ 2 {\displaystyle \ell ^{2}} .
A = [ ⋮ ⋮ ⋮ ⋮ ⋯ a 0 a − 1 a − 2 a − 3 ⋯ ⋯ a 1 a 0 a − 1 a − 2 ⋯ ⋯ a 2 a 1 a 0 a − 1 ⋯ ⋯ a 3 a 2 a 1 a 0 ⋯ ⋮ ⋮ ⋮ ⋮ ] . {\displaystyle A={\begin{bmatrix}&\vdots &\vdots &\vdots &\vdots \\\cdots &a_{0}&a_{-1}&a_{-2}&a_{-3}&\cdots \\\cdots &a_{1}&a_{0}&a_{-1}&a_{-2}&\cdots \\\cdots &a_{2}&a_{1}&a_{0}&a_{-1}&\cdots \\\cdots &a_{3}&a_{2}&a_{1}&a_{0}&\cdots \\&\vdots &\vdots &\vdots &\vdots \end{bmatrix}}.}The induced operator is bounded if and only if the coefficients of the Toeplitz matrix A {\displaystyle A} are the Fourier coefficients of some essentially bounded function f {\displaystyle f} .
In such cases, f {\displaystyle f} is called the symbol of the Toeplitz matrix A {\displaystyle A} , and the spectral norm of the Toeplitz matrix A {\displaystyle A} coincides with the L ∞ {\displaystyle L^{\infty }} norm of its symbol. The proof can be found as Theorem 1.1 of Böttcher and Grudsky.8
See also
- Circulant matrix, a square Toeplitz matrix with the additional property that a i = a i + n {\displaystyle a_{i}=a_{i+n}}
- Hankel matrix, an "upside down" (i.e., row-reversed) Toeplitz matrix
- Szegő limit theorems – Determinant of large Toeplitz matrices
- Toeplitz operator – compression of a multiplication operator on the circle to the Hardy spacePages displaying wikidata descriptions as a fallback
Notes
- Bojanczyk, A. W.; Brent, R. P.; de Hoog, F. R.; Sweet, D. R. (1995), "On the stability of the Bareiss and related Toeplitz factorization algorithms", SIAM Journal on Matrix Analysis and Applications, 16: 40–57, arXiv:1004.5510, doi:10.1137/S0895479891221563, S2CID 367586
- Böttcher, Albrecht; Grudsky, Sergei M. (2012), Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis, Birkhäuser, ISBN 978-3-0348-8395-5
- Brent, R. P. (1999), "Stability of fast algorithms for structured linear systems", in Kailath, T.; Sayed, A. H. (eds.), Fast Reliable Algorithms for Matrices with Structure, SIAM, pp. 103–116, arXiv:1005.0671, doi:10.1137/1.9781611971354.ch4, hdl:1885/40746, ISBN 978-0-89871-431-9, S2CID 13905858
- Chan, R. H.-F.; Jin, X.-Q. (2007), An Introduction to Iterative Toeplitz Solvers, SIAM, doi:10.1137/1.9780898718850, ISBN 978-0-89871-636-8
- Chandrasekeran, S.; Gu, M.; Sun, X.; Xia, J.; Zhu, J. (2007), "A superfast algorithm for Toeplitz systems of linear equations", SIAM Journal on Matrix Analysis and Applications, 29 (4): 1247–66, CiteSeerX 10.1.1.116.3297, doi:10.1137/040617200
- Chen, W. W.; Hurvich, C. M.; Lu, Y. (2006), "On the correlation matrix of the discrete Fourier transform and the fast solution of large Toeplitz systems for long-memory time series", Journal of the American Statistical Association, 101 (474): 812–822, CiteSeerX 10.1.1.574.4394, doi:10.1198/016214505000001069, S2CID 55893963
- Hayes, Monson H. (1996), Statistical digital signal processing and modeling, Wiley, ISBN 0-471-59431-8
- Krishna, H.; Wang, Y. (1993), "The Split Levinson Algorithm is weakly stable", SIAM Journal on Numerical Analysis, 30 (5): 1498–1508, doi:10.1137/0730078
- Monahan, J. F. (2011), Numerical Methods of Statistics, Cambridge University Press, doi:10.1017/CBO9780511977176, ISBN 978-1-139-08211-2
- Mukherjee, Bishwa Nath; Maiti, Sadhan Samar (1988), "On some properties of positive definite Toeplitz matrices and their possible applications" (PDF), Linear Algebra and Its Applications, 102: 211–240, doi:10.1016/0024-3795(88)90326-6
- Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. (2007), Numerical Recipes: The Art of Scientific Computing (3rd ed.), Cambridge University Press, ISBN 978-0-521-88068-8
- Stewart, M. (2003), "A superfast Toeplitz solver with improved numerical stability", SIAM Journal on Matrix Analysis and Applications, 25 (3): 669–693, doi:10.1137/S089547980241791X, S2CID 15717371
- Yang, Zai; Xie, Lihua; Stoica, Petre (2016), "Vandermonde decomposition of multilevel Toeplitz matrices with application to multidimensional super-resolution", IEEE Transactions on Information Theory, 62 (6): 3685–3701, arXiv:1505.02510, doi:10.1109/TIT.2016.2553041, S2CID 6291005
Further reading
- Bareiss, E. H. (1969), "Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices", Numerische Mathematik, 13 (5): 404–424, doi:10.1007/BF02163269, S2CID 121761517
- Goldreich, O.; Tal, A. (2018), "Matrix rigidity of random Toeplitz matrices", Computational Complexity, 27 (2): 305–350, doi:10.1007/s00037-016-0144-9, S2CID 253641700
- Golub, G. H.; van Loan, C. F. (1996), Matrix Computations, Johns Hopkins University Press, §4.7—Toeplitz and Related Systems, ISBN 0-8018-5413-X, OCLC 34515797
- Gray, R. M. (2005), "Toeplitz and Circulant Matrices: A Review" (PDF), Foundations and Trends in Communications and Information Theory, 2 (3), Now Publishers: 155–239, doi:10.1561/0100000006
- Noor, F.; Morgera, S. D. (1992), "Construction of a Hermitian Toeplitz matrix from an arbitrary set of eigenvalues", IEEE Transactions on Signal Processing, 40 (8): 2093–4, Bibcode:1992ITSP...40.2093N, doi:10.1109/78.149978
- Pan, Victor Y. (2001), Structured Matrices and Polynomials: unified superfast algorithms, Birkhäuser, ISBN 978-0817642402
- Ye, Ke; Lim, Lek-Heng (2016), "Every matrix is a product of Toeplitz matrices", Foundations of Computational Mathematics, 16 (3): 577–598, arXiv:1307.5132, doi:10.1007/s10208-015-9254-z, S2CID 254166943
References
Press et al. 2007, §2.8.2—Toeplitz matrices - Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. (2007), Numerical Recipes: The Art of Scientific Computing (3rd ed.), Cambridge University Press, ISBN 978-0-521-88068-8 ↩
Hayes 1996, Chapter 5.2.6 - Hayes, Monson H. (1996), Statistical digital signal processing and modeling, Wiley, ISBN 0-471-59431-8 ↩
Krishna & Wang 1993 - Krishna, H.; Wang, Y. (1993), "The Split Levinson Algorithm is weakly stable", SIAM Journal on Numerical Analysis, 30 (5): 1498–1508, doi:10.1137/0730078 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJNAAM000030000005001498000001&idtype=cvips&gifs=yes ↩
Monahan 2011, §4.5—Toeplitz systems - Monahan, J. F. (2011), Numerical Methods of Statistics, Cambridge University Press, doi:10.1017/CBO9780511977176, ISBN 978-1-139-08211-2 https://doi.org/10.1017%2FCBO9780511977176 ↩
Brent 1999 - Brent, R. P. (1999), "Stability of fast algorithms for structured linear systems", in Kailath, T.; Sayed, A. H. (eds.), Fast Reliable Algorithms for Matrices with Structure, SIAM, pp. 103–116, arXiv:1005.0671, doi:10.1137/1.9781611971354.ch4, hdl:1885/40746, ISBN 978-0-89871-431-9, S2CID 13905858 https://arxiv.org/abs/1005.0671 ↩
Bojanczyk et al. 1995 - Bojanczyk, A. W.; Brent, R. P.; de Hoog, F. R.; Sweet, D. R. (1995), "On the stability of the Bareiss and related Toeplitz factorization algorithms", SIAM Journal on Matrix Analysis and Applications, 16: 40–57, arXiv:1004.5510, doi:10.1137/S0895479891221563, S2CID 367586 https://arxiv.org/abs/1004.5510 ↩
Mukherjee & Maiti 1988 - Mukherjee, Bishwa Nath; Maiti, Sadhan Samar (1988), "On some properties of positive definite Toeplitz matrices and their possible applications" (PDF), Linear Algebra and Its Applications, 102: 211–240, doi:10.1016/0024-3795(88)90326-6 https://core.ac.uk/download/pdf/82070573.pdf ↩
Böttcher & Grudsky 2012 - Böttcher, Albrecht; Grudsky, Sergei M. (2012), Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis, Birkhäuser, ISBN 978-3-0348-8395-5 https://books.google.com/books?id=Dmr0BwAAQBAJ&pg=PA1 ↩