Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Transition metal formyl complex
Class of chemical compounds

In organometallic chemistry, a transition metal formyl complex is a metal complex containing one (usually) or more formyl (CHO) ligand. A subset of transition metal acyl complexes, formyl complexes can be viewed as metalla-aldehydes. A representative example is (CO)5ReCHO. The formyl is viewed as an X (pseudohalide) ligand. Metal formyls are proposed as intermediates in the hydrogenation of carbon monoxide, as occurs in the Fischer-Tropsch process.

Related Image Collections Add Image
We don't have any YouTube videos related to Transition metal formyl complex yet.
We don't have any PDF documents related to Transition metal formyl complex yet.
We don't have any Books related to Transition metal formyl complex yet.
We don't have any archived web articles related to Transition metal formyl complex yet.

Structure and bonding

The MCHO group is planar. A C=O double bond is indicated by X-ray crystallography. A second resonance structure has a M=C double bond, with negative charge on oxygen.

Synthesis and reactions

Metal formyl complexes are often prepared by the reaction of metal carbonyls with hydride reagents:2

[Re(CO)6]+ + H− → (CO)5ReCHO

The CO ligand is the electrophile and the hydride (provided typically from a borohydride) is the nucleophile.

Some metal formyls are produced by reaction of metal carbonyl anions with reagents that donate the equivalent of a formyl cation, such a mixed formate anhydrides.3

Metal formyls participate in many reactions, many of which are motivated by interest in Fischer-Tropsch chemistry. O-alkylation gives carbenoid complexes. The formyl ligand also functions as a base, allowing the formation of M-CH=O-M' linkages.4 Decarbonylation leads to de-insertion of the carbonyl, yielding hydride complexes.5

References

  1. Gladysz, J.A. (1982). Transition Metal Formyl Complexes. Advances in Organometallic Chemistry. Vol. 20. pp. 1–38. doi:10.1016/S0065-3055(08)60519-5. ISBN 9780120311200. 9780120311200

  2. Maity, Ayan; Teets, Thomas S. (2016). "Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes". Chemical Reviews. 116 (15): 8873–8911. doi:10.1021/acs.chemrev.6b00034. PMID 27164024. /wiki/Doi_(identifier)

  3. Collman, J. P.; Winter, S. R. (1973). "Isolation and Characterization of a Kinetically Stable transition Metal Formyl complex". Journal of the American Chemical Society. 95 (12): 4089–4090. doi:10.1021/ja00793a066. /wiki/Doi_(identifier)

  4. Chen, Zilu; Schmalle, Helmut W.; Fox, Thomas; Berke, Heinz (2005). "Insertion Reactions of Hydridonitrosyltetrakis(trimethylphosphine) Tungsten(0)". Dalton Transactions (3): 580–587. doi:10.1039/b414943b. PMID 15672204. /wiki/Doi_(identifier)

  5. Gladysz, J.A. (1982). Transition Metal Formyl Complexes. Advances in Organometallic Chemistry. Vol. 20. pp. 1–38. doi:10.1016/S0065-3055(08)60519-5. ISBN 9780120311200. 9780120311200