Truncated order-7 heptagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 7.14.14 |
Schläfli symbol | t{7,7} |
Wythoff symbol | 2 7 | 7 |
Coxeter diagram | |
Symmetry group | [7,7], (*772) |
Dual | Order-7 heptakis heptagonal tiling |
Properties | Vertex-transitive |
In geometry, the truncated order-7 heptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{7,7}, constructed from one heptagons and two tetrakaidecagons around every vertex.
Related Image Collections
Add Image
We don't have any YouTube videos related to Truncated order-7 heptagonal tiling yet.
You can add one yourself here.
We don't have any PDF documents related to Truncated order-7 heptagonal tiling yet.
You can add one yourself here.
We don't have any Books related to Truncated order-7 heptagonal tiling yet.
You can add one yourself here.
We don't have any archived web articles related to Truncated order-7 heptagonal tiling yet.
Related tilings
Uniform heptaheptagonal tilings
| |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [7,7], (*772) | [7,7]+, (772) | ||||||||||
= = | = = | = = | = = | = = | = = | == | == | ||||
{7,7} | t{7,7} | r{7,7} | 2t{7,7}=t{7,7} | 2r{7,7}={7,7} | rr{7,7} | tr{7,7} | sr{7,7} | ||||
Uniform duals | |||||||||||
V77 | V7.14.14 | V7.7.7.7 | V7.14.14 | V77 | V4.7.4.7 | V4.14.14 | V3.3.7.3.7 |
See also
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.