Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Gegenbauer polynomials
Polynomial sequence

In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(α)n(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.

We don't have any images related to Gegenbauer polynomials yet.
We don't have any YouTube videos related to Gegenbauer polynomials yet.
We don't have any PDF documents related to Gegenbauer polynomials yet.
We don't have any Books related to Gegenbauer polynomials yet.
We don't have any archived web articles related to Gegenbauer polynomials yet.

Characterizations

A variety of characterizations of the Gegenbauer polynomials are available.

  • The polynomials can be defined in terms of their generating function (Stein & Weiss 1971, §IV.2):
1 ( 1 − 2 x t + t 2 ) α = ∑ n = 0 ∞ C n ( α ) ( x ) t n ( 0 ≤ | x | < 1 , | t | ≤ 1 , α > 0 ) {\displaystyle {\frac {1}{(1-2xt+t^{2})^{\alpha }}}=\sum _{n=0}^{\infty }C_{n}^{(\alpha )}(x)t^{n}\qquad (0\leq |x|<1,|t|\leq 1,\alpha >0)} C 0 ( α ) ( x ) = 1 C 1 ( α ) ( x ) = 2 α x ( n + 1 ) C n + 1 ( α ) ( x ) = 2 ( n + α ) x C n ( α ) ( x ) − ( n + 2 α − 1 ) C n − 1 ( α ) ( x ) . {\displaystyle {\begin{aligned}C_{0}^{(\alpha )}(x)&=1\\C_{1}^{(\alpha )}(x)&=2\alpha x\\(n+1)C_{n+1}^{(\alpha )}(x)&=2(n+\alpha )xC_{n}^{(\alpha )}(x)-(n+2\alpha -1)C_{n-1}^{(\alpha )}(x).\end{aligned}}}
  • Gegenbauer polynomials are particular solutions of the Gegenbauer differential equation (Suetin 2001):
( 1 − x 2 ) y ″ − ( 2 α + 1 ) x y ′ + n ( n + 2 α ) y = 0. {\displaystyle (1-x^{2})y''-(2\alpha +1)xy'+n(n+2\alpha )y=0.\,} When α = 1/2, the equation reduces to the Legendre equation, and the Gegenbauer polynomials reduce to the Legendre polynomials. When α = 1, the equation reduces to the Chebyshev differential equation, and the Gegenbauer polynomials reduce to the Chebyshev polynomials of the second kind.1 C n ( α ) ( z ) = ( 2 α ) n n ! 2 F 1 ( − n , 2 α + n ; α + 1 2 ; 1 − z 2 ) . {\displaystyle C_{n}^{(\alpha )}(z)={\frac {(2\alpha )_{n}}{n!}}\,_{2}F_{1}\left(-n,2\alpha +n;\alpha +{\frac {1}{2}};{\frac {1-z}{2}}\right).} (Abramowitz & Stegun p. 561). Here (2α)n is the rising factorial. Explicitly, C n ( α ) ( z ) = ∑ k = 0 ⌊ n / 2 ⌋ ( − 1 ) k Γ ( n − k + α ) Γ ( α ) k ! ( n − 2 k ) ! ( 2 z ) n − 2 k . {\displaystyle C_{n}^{(\alpha )}(z)=\sum _{k=0}^{\lfloor n/2\rfloor }(-1)^{k}{\frac {\Gamma (n-k+\alpha )}{\Gamma (\alpha )k!(n-2k)!}}(2z)^{n-2k}.} From this it is also easy to obtain the value at unit argument: C n ( α ) ( 1 ) = Γ ( 2 α + n ) Γ ( 2 α ) n ! . {\displaystyle C_{n}^{(\alpha )}(1)={\frac {\Gamma (2\alpha +n)}{\Gamma (2\alpha )n!}}.} C n ( α ) ( x ) = ( 2 α ) n ( α + 1 2 ) n P n ( α − 1 / 2 , α − 1 / 2 ) ( x ) . {\displaystyle C_{n}^{(\alpha )}(x)={\frac {(2\alpha )_{n}}{(\alpha +{\frac {1}{2}})_{n}}}P_{n}^{(\alpha -1/2,\alpha -1/2)}(x).} in which ( θ ) n {\displaystyle (\theta )_{n}} represents the rising factorial of θ {\displaystyle \theta } . One therefore also has the Rodrigues formula C n ( α ) ( x ) = ( − 1 ) n 2 n n ! Γ ( α + 1 2 ) Γ ( n + 2 α ) Γ ( 2 α ) Γ ( α + n + 1 2 ) ( 1 − x 2 ) − α + 1 / 2 d n d x n [ ( 1 − x 2 ) n + α − 1 / 2 ] . {\displaystyle C_{n}^{(\alpha )}(x)={\frac {(-1)^{n}}{2^{n}n!}}{\frac {\Gamma (\alpha +{\frac {1}{2}})\Gamma (n+2\alpha )}{\Gamma (2\alpha )\Gamma (\alpha +n+{\frac {1}{2}})}}(1-x^{2})^{-\alpha +1/2}{\frac {d^{n}}{dx^{n}}}\left[(1-x^{2})^{n+\alpha -1/2}\right].}
  • An alternative normalization sets C n ( α ) ( 1 ) = 1 {\displaystyle C_{n}^{(\alpha )}(1)=1} . Assuming this alternative normalization, the derivatives of Gegenbauer are expressed in terms of Gegenbauer:2

d p d x p C q + 2 j + 1 ( α ) ( x ) = 2 q ( q + 2 j + 1 ) ! ( q − 1 ) ! Γ ( q + 2 j + 2 α + 1 ) ∑ i = 0 j ( 2 i + α + 1 ) Γ ( 2 i + 2 α + 1 ) ( 2 i + 1 ) ! ( j − i ) ! × Γ ( q + j + i + α + 1 ) Γ ( j + i + α + 2 ) ( q + j − i − 1 ) ! C 2 i + 1 ( α ) ( x ) {\displaystyle {\begin{aligned}{\frac {d^{p}}{dx^{p}}}C_{q+2j+1}^{(\alpha )}(x)={\frac {2q(q+2j+1)!}{(q-1)!\Gamma (q+2j+2\alpha +1)}}&\sum _{i=0}^{j}{\frac {(2i+\alpha +1)\Gamma (2i+2\alpha +1)}{(2i+1)!(j-i)!}}\\&\times {\frac {\Gamma (q+j+i+\alpha +1)}{\Gamma (j+i+\alpha +2)}}(q+j-i-1)!C_{2i+1}^{(\alpha )}(x)\end{aligned}}}

Orthogonality and normalization

For a fixed α > -1/2, the polynomials are orthogonal on [−1, 1] with respect to the weighting function (Abramowitz & Stegun p. 774)

w ( z ) = ( 1 − z 2 ) α − 1 2 . {\displaystyle w(z)=\left(1-z^{2}\right)^{\alpha -{\frac {1}{2}}}.}

To wit, for n ≠ m,

∫ − 1 1 C n ( α ) ( x ) C m ( α ) ( x ) ( 1 − x 2 ) α − 1 2 d x = 0. {\displaystyle \int _{-1}^{1}C_{n}^{(\alpha )}(x)C_{m}^{(\alpha )}(x)(1-x^{2})^{\alpha -{\frac {1}{2}}}\,dx=0.}

They are normalized by

∫ − 1 1 [ C n ( α ) ( x ) ] 2 ( 1 − x 2 ) α − 1 2 d x = π 2 1 − 2 α Γ ( n + 2 α ) n ! ( n + α ) [ Γ ( α ) ] 2 . {\displaystyle \int _{-1}^{1}\left[C_{n}^{(\alpha )}(x)\right]^{2}(1-x^{2})^{\alpha -{\frac {1}{2}}}\,dx={\frac {\pi 2^{1-2\alpha }\Gamma (n+2\alpha )}{n!(n+\alpha )[\Gamma (\alpha )]^{2}}}.}

Applications

The Gegenbauer polynomials appear naturally as extensions of Legendre polynomials in the context of potential theory and harmonic analysis. The Newtonian potential in Rn has the expansion, valid with α = (n − 2)/2,

1 | x − y | n − 2 = ∑ k = 0 ∞ | x | k | y | k + n − 2 C k ( α ) ( x ⋅ y | x | | y | ) . {\displaystyle {\frac {1}{|\mathbf {x} -\mathbf {y} |^{n-2}}}=\sum _{k=0}^{\infty }{\frac {|\mathbf {x} |^{k}}{|\mathbf {y} |^{k+n-2}}}C_{k}^{(\alpha )}({\frac {\mathbf {x} \cdot \mathbf {y} }{|\mathbf {x} ||\mathbf {y} |}}).}

When n = 3, this gives the Legendre polynomial expansion of the gravitational potential. Similar expressions are available for the expansion of the Poisson kernel in a ball (Stein & Weiss 1971).

It follows that the quantities C k ( ( n − 2 ) / 2 ) ( x ⋅ y ) {\displaystyle C_{k}^{((n-2)/2)}(\mathbf {x} \cdot \mathbf {y} )} are spherical harmonics, when regarded as a function of x only. They are, in fact, exactly the zonal spherical harmonics, up to a normalizing constant.

Gegenbauer polynomials also appear in the theory of positive-definite functions.

The Askey–Gasper inequality reads

∑ j = 0 n C j α ( x ) ( 2 α + j − 1 j ) ≥ 0 ( x ≥ − 1 , α ≥ 1 / 4 ) . {\displaystyle \sum _{j=0}^{n}{\frac {C_{j}^{\alpha }(x)}{2\alpha +j-1 \choose j}}\geq 0\qquad (x\geq -1,\,\alpha \geq 1/4).}

In spectral methods for solving differential equations, if a function is expanded in the basis of Chebyshev polynomials and its derivative is represented in a Gegenbauer/ultraspherical basis, then the derivative operator becomes a diagonal matrix, leading to fast banded matrix methods for large problems.3

Other properties

Dirichlet–Mehler-type integral representation:4 P n ( α , α ) ( cos ⁡ θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos ⁡ θ ) C n ( α + 1 2 ) ( 1 ) = 2 α + 1 2 Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) ( sin ⁡ θ ) − 2 α ∫ 0 θ cos ⁡ ( ( n + α + 1 2 ) ϕ ) ( cos ⁡ ϕ − cos ⁡ θ ) − α + 1 2 d ϕ , {\displaystyle {\frac {P_{n}^{(\alpha ,\alpha )}\left(\cos \theta \right)}{P_{n}^{(\alpha ,\alpha )}\left(1\right)}}={\frac {C_{n}^{(\alpha +{\frac {1}{2}})}\left(\cos \theta \right)}{C_{n}^{(\alpha +{\frac {1}{2}})}\left(1\right)}}={\frac {2^{\alpha +{\frac {1}{2}}}\Gamma \left(\alpha +1\right)}{{\pi }^{\frac {1}{2}}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}(\sin \theta )^{-2\alpha }\int _{0}^{\theta }{\frac {\cos \left((n+\alpha +{\tfrac {1}{2}})\phi \right)}{(\cos \phi -\cos \theta )^{-\alpha +{\frac {1}{2}}}}}\,\mathrm {d} \phi ,} Laplace-type P n ( α , α ) ( cos ⁡ θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos ⁡ θ ) C n ( α + 1 2 ) ( 1 ) = Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) ∫ 0 π ( cos ⁡ θ + i sin ⁡ θ cos ⁡ ϕ ) n ( sin ⁡ ϕ ) 2 α   d ϕ {\displaystyle {\begin{aligned}{\frac {P_{n}^{(\alpha ,\alpha )}(\cos \theta )}{P_{n}^{(\alpha ,\alpha )}(1)}}&={\frac {C_{n}^{\left(\alpha +{\frac {1}{2}}\right)}(\cos \theta )}{C_{n}^{\left(\alpha +{\frac {1}{2}}\right)}(1)}}\\&={\frac {\Gamma (\alpha +1)}{\pi ^{\frac {1}{2}}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\pi }(\cos \theta +i\sin \theta \cos \phi )^{n}(\sin \phi )^{2\alpha }\mathrm {~d} \phi \end{aligned}}}

See also

Specific

References

  1. Arfken, Weber, and Harris (2013) "Mathematical Methods for Physicists", 7th edition; ch. 18.4

  2. Doha, E. H. (1991-01-01). "The coefficients of differentiated expansions and derivatives of ultraspherical polynomials". Computers & Mathematics with Applications. 21 (2): 115–122. doi:10.1016/0898-1221(91)90089-M. ISSN 0898-1221. https://www.sciencedirect.com/science/article/pii/089812219190089M

  3. Olver, Sheehan; Townsend, Alex (January 2013). "A Fast and Well-Conditioned Spectral Method". SIAM Review. 55 (3): 462–489. arXiv:1202.1347. doi:10.1137/120865458. eISSN 1095-7200. ISSN 0036-1445. /wiki/ArXiv_(identifier)

  4. "DLMF: §18.10 Integral Representations ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials". dlmf.nist.gov. Retrieved 2025-03-18. https://dlmf.nist.gov/18.10