Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Y-intercept
The point where a line crosses the y-axis

In analytic geometry, using the common convention that the horizontal axis represents a variable x {\displaystyle x} and the vertical axis represents a variable y {\displaystyle y} , a y {\displaystyle y} -intercept or vertical intercept is a point where the graph of a function or relation intersects the y {\displaystyle y} -axis of the coordinate system. As such, these points satisfy x = 0 {\displaystyle x=0} .

Related Image Collections Add Image
We don't have any YouTube videos related to Y-intercept yet.
We don't have any PDF documents related to Y-intercept yet.
We don't have any Books related to Y-intercept yet.
We don't have any archived web articles related to Y-intercept yet.

Using equations

If the curve in question is given as y = f ( x ) , {\displaystyle y=f(x),} the y {\displaystyle y} -coordinate of the y {\displaystyle y} -intercept is found by calculating f ( 0 ) {\displaystyle f(0)} . Functions which are undefined at x = 0 {\displaystyle x=0} have no y {\displaystyle y} -intercept.

If the function is linear and is expressed in slope-intercept form as f ( x ) = a + b x {\displaystyle f(x)=a+bx} , the constant term a {\displaystyle a} is the y {\displaystyle y} -coordinate of the y {\displaystyle y} -intercept.2

Multiple y {\displaystyle y} -intercepts

Some 2-dimensional mathematical relationships such as circles, ellipses, and hyperbolas can have more than one y {\displaystyle y} -intercept. Because functions associate x {\displaystyle x} -values to no more than one y {\displaystyle y} -value as part of their definition, they can have at most one y {\displaystyle y} -intercept.

x {\displaystyle x} -intercepts

Main article: Zero of a function

Analogously, an x {\displaystyle x} -intercept is a point where the graph of a function or relation intersects with the x {\displaystyle x} -axis. As such, these points satisfy y = 0 {\displaystyle y=0} . The zeros, or roots, of such a function or relation are the x {\displaystyle x} -coordinates of these x {\displaystyle x} -intercepts.3

Functions of the form y = f ( x ) {\displaystyle y=f(x)} have at most one y {\displaystyle y} -intercept, but may contain multiple x {\displaystyle x} -intercepts. The x {\displaystyle x} -intercepts of functions, if any exist, are often more difficult to locate than the y {\displaystyle y} -intercept, as finding the y {\displaystyle y} -intercept involves simply evaluating the function at x = 0 {\displaystyle x=0} .

In higher dimensions

The notion may be extended for 3-dimensional space and higher dimensions, as well as for other coordinate axes, possibly with other names. For example, one may speak of the I {\displaystyle I} -intercept of the current–voltage characteristic of, say, a diode. (In electrical engineering, I {\displaystyle I} is the symbol used for electric current.)

See also

References

  1. Weisstein, Eric W. "y-Intercept". MathWorld--A Wolfram Web Resource. Retrieved 2010-09-22. http://mathworld.wolfram.com/y-Intercept.html

  2. Stapel, Elizabeth. "x- and y-Intercepts." Purplemath. Available from http://www.purplemath.com/modules/intrcept.htm. https://www.purplemath.com/modules/intrcept.htm

  3. Weisstein, Eric W. "Root". MathWorld--A Wolfram Web Resource. Retrieved 2010-09-22. http://mathworld.wolfram.com/Root.html