Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Virtual displacement

In analytical mechanics, a branch of applied mathematics and physics, a virtual displacement (or infinitesimal variation) δ γ {\displaystyle \delta \gamma } shows how the mechanical system's trajectory can hypothetically (hence the term virtual) deviate very slightly from the actual trajectory γ {\displaystyle \gamma } of the system without violating the system's constraints.: 263  For every time instant t , {\displaystyle t,} δ γ ( t ) {\displaystyle \delta \gamma (t)} is a vector tangential to the configuration space at the point γ ( t ) . {\displaystyle \gamma (t).} The vectors δ γ ( t ) {\displaystyle \delta \gamma (t)} show the directions in which γ ( t ) {\displaystyle \gamma (t)} can "go" without breaking the constraints.

For example, the virtual displacements of the system consisting of a single particle on a two-dimensional surface fill up the entire tangent plane, assuming there are no additional constraints.

If, however, the constraints require that all the trajectories γ {\displaystyle \gamma } pass through the given point q {\displaystyle \mathbf {q} } at the given time τ , {\displaystyle \tau ,} i.e. γ ( τ ) = q , {\displaystyle \gamma (\tau )=\mathbf {q} ,} then δ γ ( τ ) = 0. {\displaystyle \delta \gamma (\tau )=0.}

Related Image Collections Add Image
We don't have any YouTube videos related to Virtual displacement yet.
We don't have any PDF documents related to Virtual displacement yet.
We don't have any Books related to Virtual displacement yet.
We don't have any archived web articles related to Virtual displacement yet.

Notations

Let M {\displaystyle M} be the configuration space of the mechanical system, t 0 , t 1 ∈ R {\displaystyle t_{0},t_{1}\in \mathbb {R} } be time instants, q 0 , q 1 ∈ M , {\displaystyle q_{0},q_{1}\in M,} C ∞ [ t 0 , t 1 ] {\displaystyle C^{\infty }[t_{0},t_{1}]} consists of smooth functions on [ t 0 , t 1 ] {\displaystyle [t_{0},t_{1}]} , and

P ( M ) = { γ ∈ C ∞ ( [ t 0 , t 1 ] , M ) ∣ γ ( t 0 ) = q 0 ,   γ ( t 1 ) = q 1 } . {\displaystyle P(M)=\{\gamma \in C^{\infty }([t_{0},t_{1}],M)\mid \gamma (t_{0})=q_{0},\ \gamma (t_{1})=q_{1}\}.}

The constraints γ ( t 0 ) = q 0 , {\displaystyle \gamma (t_{0})=q_{0},} γ ( t 1 ) = q 1 {\displaystyle \gamma (t_{1})=q_{1}} are here for illustration only. In practice, for each individual system, an individual set of constraints is required.

Definition

For each path γ ∈ P ( M ) {\displaystyle \gamma \in P(M)} and ϵ 0 > 0 , {\displaystyle \epsilon _{0}>0,} a variation of γ {\displaystyle \gamma } is a function Γ : [ t 0 , t 1 ] × [ − ϵ 0 , ϵ 0 ] → M {\displaystyle \Gamma :[t_{0},t_{1}]\times [-\epsilon _{0},\epsilon _{0}]\to M} such that, for every ϵ ∈ [ − ϵ 0 , ϵ 0 ] , {\displaystyle \epsilon \in [-\epsilon _{0},\epsilon _{0}],} Γ ( ⋅ , ϵ ) ∈ P ( M ) {\displaystyle \Gamma (\cdot ,\epsilon )\in P(M)} and Γ ( t , 0 ) = γ ( t ) . {\displaystyle \Gamma (t,0)=\gamma (t).} The virtual displacement δ γ : [ t 0 , t 1 ] → T M {\displaystyle \delta \gamma :[t_{0},t_{1}]\to TM} ( T M {\displaystyle (TM} being the tangent bundle of M ) {\displaystyle M)} corresponding to the variation Γ {\displaystyle \Gamma } assigns4 to every t ∈ [ t 0 , t 1 ] {\displaystyle t\in [t_{0},t_{1}]} the tangent vector

δ γ ( t ) = d Γ ( t , ϵ ) d ϵ | ϵ = 0 ∈ T γ ( t ) M . {\displaystyle \delta \gamma (t)=\left.{\frac {d\Gamma (t,\epsilon )}{d\epsilon }}\right|_{\epsilon =0}\in T_{\gamma (t)}M.}

In terms of the tangent map,

δ γ ( t ) = Γ ∗ t ( d d ϵ | ϵ = 0 ) . {\displaystyle \delta \gamma (t)=\Gamma _{*}^{t}\left(\left.{\frac {d}{d\epsilon }}\right|_{\epsilon =0}\right).}

Here Γ ∗ t : T 0 [ − ϵ , ϵ ] → T Γ ( t , 0 ) M = T γ ( t ) M {\displaystyle \Gamma _{*}^{t}:T_{0}[-\epsilon ,\epsilon ]\to T_{\Gamma (t,0)}M=T_{\gamma (t)}M} is the tangent map of Γ t : [ − ϵ , ϵ ] → M , {\displaystyle \Gamma ^{t}:[-\epsilon ,\epsilon ]\to M,} where Γ t ( ϵ ) = Γ ( t , ϵ ) , {\displaystyle \Gamma ^{t}(\epsilon )=\Gamma (t,\epsilon ),} and d d ϵ | ϵ = 0 ∈ T 0 [ − ϵ , ϵ ] . {\displaystyle \textstyle {\frac {d}{d\epsilon }}{\Bigl |}_{\epsilon =0}\in T_{0}[-\epsilon ,\epsilon ].}

Properties

  • Coordinate representation. If { q i } i = 1 n {\displaystyle \{q_{i}\}_{i=1}^{n}} are the coordinates in an arbitrary chart on M {\displaystyle M} and n = dim ⁡ M , {\displaystyle n=\dim M,} then δ γ ( t ) = ∑ i = 1 n d [ q i ( Γ ( t , ϵ ) ) ] d ϵ | ϵ = 0 ⋅ d d q i | γ ( t ) . {\displaystyle \delta \gamma (t)=\sum _{i=1}^{n}{\frac {d[q_{i}(\Gamma (t,\epsilon ))]}{d\epsilon }}{\Biggl |}_{\epsilon =0}\cdot {\frac {d}{dq_{i}}}{\Biggl |}_{\gamma (t)}.}
  • If, for some time instant τ {\displaystyle \tau } and every γ ∈ P ( M ) , {\displaystyle \gamma \in P(M),} γ ( τ ) = const , {\displaystyle \gamma (\tau )={\text{const}},} then, for every γ ∈ P ( M ) , {\displaystyle \gamma \in P(M),} δ γ ( τ ) = 0. {\displaystyle \delta \gamma (\tau )=0.}
  • If γ , d γ d t ∈ P ( M ) , {\displaystyle \textstyle \gamma ,{\frac {d\gamma }{dt}}\in P(M),} then δ d γ d t = d d t δ γ . {\displaystyle \delta {\frac {d\gamma }{dt}}={\frac {d}{dt}}\delta \gamma .}

Examples

Free particle in R3

A single particle freely moving in R 3 {\displaystyle \mathbb {R} ^{3}} has 3 degrees of freedom. The configuration space is M = R 3 , {\displaystyle M=\mathbb {R} ^{3},} and P ( M ) = C ∞ ( [ t 0 , t 1 ] , M ) . {\displaystyle P(M)=C^{\infty }([t_{0},t_{1}],M).} For every path γ ∈ P ( M ) {\displaystyle \gamma \in P(M)} and a variation Γ ( t , ϵ ) {\displaystyle \Gamma (t,\epsilon )} of γ , {\displaystyle \gamma ,} there exists a unique σ ∈ T 0 R 3 {\displaystyle \sigma \in T_{0}\mathbb {R} ^{3}} such that Γ ( t , ϵ ) = γ ( t ) + σ ( t ) ϵ + o ( ϵ ) , {\displaystyle \Gamma (t,\epsilon )=\gamma (t)+\sigma (t)\epsilon +o(\epsilon ),} as ϵ → 0. {\displaystyle \epsilon \to 0.} By the definition,

δ γ ( t ) = ( d d ϵ ( γ ( t ) + σ ( t ) ϵ + o ( ϵ ) ) ) | ϵ = 0 {\displaystyle \delta \gamma (t)=\left.\left({\frac {d}{d\epsilon }}{\Bigl (}\gamma (t)+\sigma (t)\epsilon +o(\epsilon ){\Bigr )}\right)\right|_{\epsilon =0}}

which leads to

δ γ ( t ) = σ ( t ) ∈ T γ ( t ) R 3 . {\displaystyle \delta \gamma (t)=\sigma (t)\in T_{\gamma (t)}\mathbb {R} ^{3}.}

Free particles on a surface

N {\displaystyle N} particles moving freely on a two-dimensional surface S ⊂ R 3 {\displaystyle S\subset \mathbb {R} ^{3}} have 2 N {\displaystyle 2N} degree of freedom. The configuration space here is

M = { ( r 1 , … , r N ) ∈ R 3 N ∣ r i ∈ R 3 ;   r i ≠ r j   if   i ≠ j } , {\displaystyle M=\{(\mathbf {r} _{1},\ldots ,\mathbf {r} _{N})\in \mathbb {R} ^{3\,N}\mid \mathbf {r} _{i}\in \mathbb {R} ^{3};\ \mathbf {r} _{i}\neq \mathbf {r} _{j}\ {\text{if}}\ i\neq j\},}

where r i ∈ R 3 {\displaystyle \mathbf {r} _{i}\in \mathbb {R} ^{3}} is the radius vector of the i th {\displaystyle i^{\text{th}}} particle. It follows that

T ( r 1 , … , r N ) M = T r 1 S ⊕ … ⊕ T r N S , {\displaystyle T_{(\mathbf {r} _{1},\ldots ,\mathbf {r} _{N})}M=T_{\mathbf {r} _{1}}S\oplus \ldots \oplus T_{\mathbf {r} _{N}}S,}

and every path γ ∈ P ( M ) {\displaystyle \gamma \in P(M)} may be described using the radius vectors r i {\displaystyle \mathbf {r} _{i}} of each individual particle, i.e.

γ ( t ) = ( r 1 ( t ) , … , r N ( t ) ) . {\displaystyle \gamma (t)=(\mathbf {r} _{1}(t),\ldots ,\mathbf {r} _{N}(t)).}

This implies that, for every δ γ ( t ) ∈ T ( r 1 ( t ) , … , r N ( t ) ) M , {\displaystyle \delta \gamma (t)\in T_{(\mathbf {r} _{1}(t),\ldots ,\mathbf {r} _{N}(t))}M,}

δ γ ( t ) = δ r 1 ( t ) ⊕ … ⊕ δ r N ( t ) , {\displaystyle \delta \gamma (t)=\delta \mathbf {r} _{1}(t)\oplus \ldots \oplus \delta \mathbf {r} _{N}(t),}

where δ r i ( t ) ∈ T r i ( t ) S . {\displaystyle \delta \mathbf {r} _{i}(t)\in T_{\mathbf {r} _{i}(t)}S.} Some authors express this as

δ γ = ( δ r 1 , … , δ r N ) . {\displaystyle \delta \gamma =(\delta \mathbf {r} _{1},\ldots ,\delta \mathbf {r} _{N}).}

Rigid body rotating around fixed point

A rigid body rotating around a fixed point with no additional constraints has 3 degrees of freedom. The configuration space here is M = S O ( 3 ) , {\displaystyle M=SO(3),} the special orthogonal group of dimension 3 (otherwise known as 3D rotation group), and P ( M ) = C ∞ ( [ t 0 , t 1 ] , M ) . {\displaystyle P(M)=C^{\infty }([t_{0},t_{1}],M).} We use the standard notation s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} to refer to the three-dimensional linear space of all skew-symmetric three-dimensional matrices. The exponential map exp : s o ( 3 ) → S O ( 3 ) {\displaystyle \exp :{\mathfrak {so}}(3)\to SO(3)} guarantees the existence of ϵ 0 > 0 {\displaystyle \epsilon _{0}>0} such that, for every path γ ∈ P ( M ) , {\displaystyle \gamma \in P(M),} its variation Γ ( t , ϵ ) , {\displaystyle \Gamma (t,\epsilon ),} and t ∈ [ t 0 , t 1 ] , {\displaystyle t\in [t_{0},t_{1}],} there is a unique path Θ t ∈ C ∞ ( [ − ϵ 0 , ϵ 0 ] , s o ( 3 ) ) {\displaystyle \Theta ^{t}\in C^{\infty }([-\epsilon _{0},\epsilon _{0}],{\mathfrak {so}}(3))} such that Θ t ( 0 ) = 0 {\displaystyle \Theta ^{t}(0)=0} and, for every ϵ ∈ [ − ϵ 0 , ϵ 0 ] , {\displaystyle \epsilon \in [-\epsilon _{0},\epsilon _{0}],} Γ ( t , ϵ ) = γ ( t ) exp ⁡ ( Θ t ( ϵ ) ) . {\displaystyle \Gamma (t,\epsilon )=\gamma (t)\exp(\Theta ^{t}(\epsilon )).} By the definition,

δ γ ( t ) = ( d d ϵ ( γ ( t ) exp ⁡ ( Θ t ( ϵ ) ) ) ) | ϵ = 0 = γ ( t ) d Θ t ( ϵ ) d ϵ | ϵ = 0 . {\displaystyle \delta \gamma (t)=\left.\left({\frac {d}{d\epsilon }}{\Bigl (}\gamma (t)\exp(\Theta ^{t}(\epsilon )){\Bigr )}\right)\right|_{\epsilon =0}=\gamma (t)\left.{\frac {d\Theta ^{t}(\epsilon )}{d\epsilon }}\right|_{\epsilon =0}.}

Since, for some function σ : [ t 0 , t 1 ] → s o ( 3 ) , {\displaystyle \sigma :[t_{0},t_{1}]\to {\mathfrak {so}}(3),} Θ t ( ϵ ) = ϵ σ ( t ) + o ( ϵ ) {\displaystyle \Theta ^{t}(\epsilon )=\epsilon \sigma (t)+o(\epsilon )} , as ϵ → 0 {\displaystyle \epsilon \to 0} ,

δ γ ( t ) = γ ( t ) σ ( t ) ∈ T γ ( t ) S O ( 3 ) . {\displaystyle \delta \gamma (t)=\gamma (t)\sigma (t)\in T_{\gamma (t)}\mathrm {SO} (3).}

See also

References

  1. Takhtajan, Leon A. (2017). "Part 1. Classical Mechanics". Classical Field Theory (PDF). Department of Mathematics, Stony Brook University, Stony Brook, NY. /wiki/Leon_Takhtajan

  2. Goldstein, H.; Poole, C. P.; Safko, J. L. (2001). Classical Mechanics (3rd ed.). Addison-Wesley. p. 16. ISBN 978-0-201-65702-9. 978-0-201-65702-9

  3. Torby, Bruce (1984). "Energy Methods". Advanced Dynamics for Engineers. HRW Series in Mechanical Engineering. United States of America: CBS College Publishing. ISBN 0-03-063366-4. 0-03-063366-4

  4. Takhtajan, Leon A. (2017). "Part 1. Classical Mechanics". Classical Field Theory (PDF). Department of Mathematics, Stony Brook University, Stony Brook, NY. /wiki/Leon_Takhtajan