Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
WENO methods
Scheme used in the numerical solution of hyperbolic partial differential equations

In numerical solution of differential equations, WENO (weighted essentially non-oscillatory) methods are classes of high-resolution schemes. WENO are used in the numerical solution of hyperbolic partial differential equations. These methods were developed from ENO methods (essentially non-oscillatory). The first WENO scheme was developed by Liu, Osher and Chan in 1994. In 1996, Guang-Shan Jiang and Chi-Wang Shu developed a new WENO scheme called WENO-JS. Nowadays, there are many WENO methods.

We don't have any images related to WENO methods yet.
We don't have any YouTube videos related to WENO methods yet.
We don't have any PDF documents related to WENO methods yet.
We don't have any Books related to WENO methods yet.
We don't have any archived web articles related to WENO methods yet.

See also

Further reading

  • Shu, Chi-Wang (1998). "Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws". Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics. Vol. 1697. pp. 325–432. CiteSeerX 10.1.1.127.895. doi:10.1007/BFb0096355. ISBN 978-3-540-64977-9.
  • Shu, Chi-Wang (2009). "High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems". SIAM Review. 51: 82–126. Bibcode:2009SIAMR..51...82S. doi:10.1137/070679065.

References

  1. Liu, Xu-Dong; Osher, Stanley; Chan, Tony (1994). "Weighted Essentially Non-oscillatory Schemes". Journal of Computational Physics. 115: 200–212. Bibcode:1994JCoPh.115..200L. CiteSeerX 10.1.1.24.8744. doi:10.1006/jcph.1994.1187. /wiki/Bibcode_(identifier)

  2. Jiang, Guang-Shan; Shu, Chi-Wang (1996). "Efficient Implementation of Weighted ENO Schemes". Journal of Computational Physics. 126 (1): 202–228. Bibcode:1996JCoPh.126..202J. CiteSeerX 10.1.1.7.6297. doi:10.1006/jcph.1996.0130. /wiki/Bibcode_(identifier)

  3. Ha, Youngsoo; Kim, Chang Ho; Lee, Yeon Ju; Yoon, Jungho (2012). "Mapped WENO schemes based on a new smoothness indicator for Hamilton–Jacobi equations". Journal of Mathematical Analysis and Applications. 394 (2): 670–682. doi:10.1016/j.jmaa.2012.04.040. https://doi.org/10.1016%2Fj.jmaa.2012.04.040

  4. Ketcheson, David I.; Gottlieb, Sigal; MacDonald, Colin B. (2011). "Strong Stability Preserving Two-step Runge–Kutta Methods". SIAM Journal on Numerical Analysis. 49 (6): 2618–2639. arXiv:1106.3626. doi:10.1137/10080960X. S2CID 16602876. /wiki/ArXiv_(identifier)