In mathematical logic, weak interpretability is a notion of translation of logical theories, introduced together with interpretability by Alfred Tarski in 1953.
Let T and S be formal theories. Slightly simplified, T is said to be weakly interpretable in S if, and only if, the language of T can be translated into the language of S in such a way that the translation of every theorem of T is consistent with S. Of course, there are some natural conditions on admissible translations here, such as the necessity for a translation to preserve the logical structure of formulas.
A generalization of weak interpretability, tolerance, was introduced by Giorgi Japaridze in 1992.
We don't have any images related to Weak interpretability yet.
You can add one yourself here.
We don't have any YouTube videos related to Weak interpretability yet.
You can add one yourself here.
We don't have any PDF documents related to Weak interpretability yet.
You can add one yourself here.
We don't have any Books related to Weak interpretability yet.
You can add one yourself here.
We don't have any archived web articles related to Weak interpretability yet.
See also
- Tarski, Alfred (1953), Undecidable theories, Studies in Logic and the Foundations of Mathematics, Amsterdam: North-Holland Publishing Company, MR 0058532. Written in collaboration with Andrzej Mostowski and Raphael M. Robinson.
- Dzhaparidze, Giorgie (1993), "A generalized notion of weak interpretability and the corresponding modal logic", Annals of Pure and Applied Logic, 61 (1–2): 113–160, doi:10.1016/0168-0072(93)90201-N, MR 1218658.
- Dzhaparidze, Giorgie (1992), "The logic of linear tolerance", Studia Logica, 51 (2): 249–277, doi:10.1007/BF00370116, MR 1185914
- Japaridze, Giorgi; de Jongh, Dick (1998), "The logic of provability", in Buss, Samuel R. (ed.), Handbook of Proof Theory, Stud. Logic Found. Math., vol. 137, Amsterdam: North-Holland, pp. 475–546, doi:10.1016/S0049-237X(98)80022-0, MR 1640331