Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Workshop on Numerical Ranges and Numerical Radii

Workshop on Numerical Ranges and Numerical Radii (WONRA) is a biennial workshop series on numerical ranges and numerical radii which began in 1992.

We don't have any images related to Workshop on Numerical Ranges and Numerical Radii yet.
We don't have any YouTube videos related to Workshop on Numerical Ranges and Numerical Radii yet.
We don't have any PDF documents related to Workshop on Numerical Ranges and Numerical Radii yet.
We don't have any Books related to Workshop on Numerical Ranges and Numerical Radii yet.
We don't have any archived web articles related to Workshop on Numerical Ranges and Numerical Radii yet.

About

Numerical ranges and numerical radii are useful in the study of matrix and operator theory. These topics have applications in many subjects in pure and applied mathematics, such as quadratic forms, Banach spaces, dilation theory, control theory, numerical analysis, quantum information science.1 2 3 4 5 6 7

History

In the early 1970s, numerical range workshops were organized by Frank Bonsall and John Duncan. More activities were started in early 1990s, including the biennial workshop series, which began in 1992, and special issues devoted to this workshop were published.8 9 10 11

Workshops

#YearLocationOrganizer(s)ParticipationWorkshop photo
11992 Williamsburg, VA, USAC. Johnson, C.K. Li33Photo
21994 Coimbra, Portugal,N. Bebiano36Photo
31996 Sapporo, Hokkaido, JapanT. Ando and K. Okubo36Photo
41998 Madison, WI, USAR. Brualdi, C.K. Li30Photo
52000 Nafplio, GreeceJ. Maroulas, M. Tsatsomeros29Photo
62002 Auburn, AL, USAC.K. Li, T.Y. Tam30Photo
72004 Coimbra, PortugalN. Bebiano, R. Lemos, G. Soares33Photo
82006 Bremen, GermanyC.K. Li, L. Rodman, C. Tretter39Photo
92008 Williamsburg, VA, USAC.K. Li29Photo
102010 Krakow, PolandC.K. Li, F.H. Szafraniec, J. Zemanek40Photo
112012 Kaohsiung, TaiwanC.K. Li, N.C. Wong48Photo
122014 Sanya, ChinaS.Y. Cheng, M.D. Choi, C.K. Li43Photo
132016 Taipei, TaiwanM.T. Chien, C.K. Li29Photo
142018 Munich, GermanyD.Farenick, D.Kribs, C.K.Li, S. Plosker, T. Schulte-Herbruggen32Photo
152019 Kawagoe, JapanC.K. Li, H. Nakazato, H. Osaka, T. Yamazaki38Photo
162023 Coimbra, PortugalN. Bebiano, R. Lemos, A. Nata G. Soares24Photo
172025 Taichung, TaiwanR.K. Lee, C.K. Li, N.S. Sze, M.C. Tsai, Y.S. Wang, N.C. Wong50Photo

Symposium in conferences

YearLocationConferencesOrganizer(s)
1991 Minneapolis, USAFourth SIAM Conference on Applied Linear AlgebraC.K. Li
2007 Shanghai, ChinaInternational Linear Algebra Society ConferenceC.K. Li

References

  1. Bhatia, R. (1997). Matrix Analysis. Springer-Verlag. p. 349. ISBN 978-0387948461. 978-0387948461

  2. Bonsall, F.; Duncan, J. (1971). Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. Cambridge University Press. p. 148. ISBN 978-0521079884. 978-0521079884

  3. Bonsall, F.; Duncan, J. (1973). Numerical Ranges II, Vol. 2. Cambridge University Press. p. 179. ISBN 978-0521202275. 978-0521202275

  4. Gustafson, K.E.; Rao, D.K.M. (1997). Numerical Range: The Field of Values of Linear Operators and Matrices. Springer-Verlag. p. 190. ISBN 978-0387948355. 978-0387948355

  5. Istratescu, B. (1982). Introduction to Linear Operator Theory. Marcel Dekker. p. 608. ISBN 978-0824768966. 978-0824768966

  6. Halmos, P.R. (1982). A Hilbert Space Problem Book. Graduate Texts in Mathematics. Vol. 19. Springer-Verlag. p. 373. doi:10.1007/978-1-4615-9976-0. ISBN 978-0387906850. 978-0387906850

  7. Horn, R.A.; Johnson, C.R. (1991). Topics in Matrix Analysis. Cambridge University Press. pp. 616. ISBN 978-0521467131. 978-0521467131

  8. Ando, T.; Li, C.K., eds. (1994). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 37 (1–3).

  9. Ando, T.; Li, C.K., eds. (1998). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 43 (4).

  10. Li, C.K.; Tam, T.Y., eds. (2006). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 52 (3–4).

  11. Li, C.K.; Tam, T.Y., eds. (2009). "Special issue devoted to WONRA". Linear and Multilinear Algebra. 57 (5).