Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Favard's theorem

In mathematics, Favard's theorem, also called the Shohat–Favard theorem, states that a sequence of polynomials satisfying a suitable three-term recurrence relation is a sequence of orthogonal polynomials. The theorem was introduced in the theory of orthogonal polynomials by Favard (1935) and Shohat (1938), though essentially the same theorem was used by Stieltjes in the theory of continued fractions many years before Favard's paper, and was rediscovered several times by other authors before Favard's work.

We don't have any images related to Favard's theorem yet.
We don't have any YouTube videos related to Favard's theorem yet.
We don't have any PDF documents related to Favard's theorem yet.
We don't have any Books related to Favard's theorem yet.
We don't have any archived web articles related to Favard's theorem yet.

Statement

Suppose that y0 = 1, y1, ... is a sequence of polynomials where yn has degree n. If this is a sequence of orthogonal polynomials for some positive weight function then it satisfies a 3-term recurrence relation. Favard's theorem is roughly a converse of this, and states that if these polynomials satisfy a 3-term recurrence relation of the form

y n + 1 = ( x − c n ) y n − d n y n − 1 {\displaystyle y_{n+1}=(x-c_{n})y_{n}-d_{n}y_{n-1}}

for some numbers cn and dn, then the polynomials yn form an orthogonal sequence for some linear functional Λ with Λ(1)=1; in other words Λ(ymyn) = 0 if m ≠ n.

The linear functional Λ is unique, and is given by Λ(1) = 1, Λ(yn) = 0 if n > 0.

The functional Λ satisfies Λ(y2n) = dn Λ(y2n–1), which implies that Λ is positive definite if (and only if) the numbers cn are real and the numbers dn are positive.

See also