Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Archimedean ordered vector space
A binary relation on a vector space

In mathematics, specifically in order theory, a binary relation ≤ {\displaystyle \,\leq \,} on a vector space X {\displaystyle X} over the real or complex numbers is called Archimedean if for all x ∈ X , {\displaystyle x\in X,} whenever there exists some y ∈ X {\displaystyle y\in X} such that n x ≤ y {\displaystyle nx\leq y} for all positive integers n , {\displaystyle n,} then necessarily x ≤ 0. {\displaystyle x\leq 0.} An Archimedean (pre)ordered vector space is a (pre)ordered vector space whose order is Archimedean. A preordered vector space X {\displaystyle X} is called almost Archimedean if for all x ∈ X , {\displaystyle x\in X,} whenever there exists a y ∈ X {\displaystyle y\in X} such that − n − 1 y ≤ x ≤ n − 1 y {\displaystyle -n^{-1}y\leq x\leq n^{-1}y} for all positive integers n , {\displaystyle n,} then x = 0. {\displaystyle x=0.}

We don't have any images related to Archimedean ordered vector space yet.
We don't have any YouTube videos related to Archimedean ordered vector space yet.
We don't have any PDF documents related to Archimedean ordered vector space yet.
We don't have any Books related to Archimedean ordered vector space yet.
We don't have any archived web articles related to Archimedean ordered vector space yet.

Characterizations

A preordered vector space ( X , ≤ ) {\displaystyle (X,\leq )} with an order unit u {\displaystyle u} is Archimedean preordered if and only if n x ≤ u {\displaystyle nx\leq u} for all non-negative integers n {\displaystyle n} implies x ≤ 0. {\displaystyle x\leq 0.} 3

Properties

Let X {\displaystyle X} be an ordered vector space over the reals that is finite-dimensional. Then the order of X {\displaystyle X} is Archimedean if and only if the positive cone of X {\displaystyle X} is closed for the unique topology under which X {\displaystyle X} is a Hausdorff TVS.4

Order unit norm

Suppose ( X , ≤ ) {\displaystyle (X,\leq )} is an ordered vector space over the reals with an order unit u {\displaystyle u} whose order is Archimedean and let U = [ − u , u ] . {\displaystyle U=[-u,u].} Then the Minkowski functional p U {\displaystyle p_{U}} of U {\displaystyle U} (defined by p U ( x ) := inf { r > 0 : x ∈ r [ − u , u ] } {\displaystyle p_{U}(x):=\inf \left\{r>0:x\in r[-u,u]\right\}} ) is a norm called the order unit norm. It satisfies p U ( u ) = 1 {\displaystyle p_{U}(u)=1} and the closed unit ball determined by p U {\displaystyle p_{U}} is equal to [ − u , u ] {\displaystyle [-u,u]} (that is, [ − u , u ] = { x ∈ X : p U ( x ) ≤ 1 } . {\displaystyle [-u,u]=\{x\in X:p_{U}(x)\leq 1\}.} 5

Examples

The space l ∞ ( S , R ) {\displaystyle l_{\infty }(S,\mathbb {R} )} of bounded real-valued maps on a set S {\displaystyle S} with the pointwise order is Archimedean ordered with an order unit u := 1 {\displaystyle u:=1} (that is, the function that is identically 1 {\displaystyle 1} on S {\displaystyle S} ). The order unit norm on l ∞ ( S , R ) {\displaystyle l_{\infty }(S,\mathbb {R} )} is identical to the usual sup norm: ‖ f ‖ := sup | f ( S ) | . {\displaystyle \|f\|:=\sup _{}|f(S)|.} 6

Examples

Every order complete vector lattice is Archimedean ordered.7 A finite-dimensional vector lattice of dimension n {\displaystyle n} is Archimedean ordered if and only if it is isomorphic to R n {\displaystyle \mathbb {R} ^{n}} with its canonical order.8 However, a totally ordered vector order of dimension > 1 {\displaystyle \,>1} can not be Archimedean ordered.9 There exist ordered vector spaces that are almost Archimedean but not Archimedean.

The Euclidean space R 2 {\displaystyle \mathbb {R} ^{2}} over the reals with the lexicographic order is not Archimedean ordered since r ( 0 , 1 ) ≤ ( 1 , 1 ) {\displaystyle r(0,1)\leq (1,1)} for every r > 0 {\displaystyle r>0} but ( 0 , 1 ) ≠ ( 0 , 0 ) . {\displaystyle (0,1)\neq (0,0).} 10

See also

Bibliography

  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.

References

  1. Schaefer & Wolff 1999, pp. 204–214. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  2. Schaefer & Wolff 1999, p. 254. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  3. Narici & Beckenstein 2011, pp. 139–153. - Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834. https://search.worldcat.org/oclc/144216834

  4. Schaefer & Wolff 1999, pp. 222–225. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  5. Narici & Beckenstein 2011, pp. 139–153. - Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834. https://search.worldcat.org/oclc/144216834

  6. Narici & Beckenstein 2011, pp. 139–153. - Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834. https://search.worldcat.org/oclc/144216834

  7. Schaefer & Wolff 1999, pp. 250–257. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  8. Schaefer & Wolff 1999, pp. 250–257. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  9. Schaefer & Wolff 1999, pp. 250–257. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  10. Narici & Beckenstein 2011, pp. 139–153. - Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834. https://search.worldcat.org/oclc/144216834