In mathematics, the normal form of a dynamical system is a simplified form that can be useful in determining the system's behavior.
Normal forms are often used for determining local bifurcations in a system. All systems exhibiting a certain type of bifurcation are locally (around the equilibrium) topologically equivalent to the normal form of the bifurcation. For example, the normal form of a saddle-node bifurcation is
d x d t = μ + x 2 {\displaystyle {\frac {\mathrm {d} x}{\mathrm {d} t}}=\mu +x^{2}}where μ {\displaystyle \mu } is the bifurcation parameter. The transcritical bifurcation
d x d t = r ln x + x − 1 {\displaystyle {\frac {\mathrm {d} x}{\mathrm {d} t}}=r\ln x+x-1}near x = 1 {\displaystyle x=1} can be converted to the normal form
d u d t = μ u − u 2 + O ( u 3 ) {\displaystyle {\frac {\mathrm {d} u}{\mathrm {d} t}}=\mu u-u^{2}+O(u^{3})}with the transformation u = x − 1 , μ = r + 1 {\displaystyle u=x-1,\mu =r+1} .
See also canonical form for use of the terms canonical form, normal form, or standard form more generally in mathematics.
Further reading
- Guckenheimer, John; Holmes, Philip (1983), Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, Section 3.3, ISBN 0-387-90819-6
- Kuznetsov, Yuri A. (1998), Elements of Applied Bifurcation Theory (Second ed.), Springer, Section 2.4, ISBN 0-387-98382-1
- Murdock, James (2006). "Normal forms". Scholarpedia. 1 (10): 1902. Bibcode:2006SchpJ...1.1902M. doi:10.4249/scholarpedia.1902.
- Murdock, James (2003). Normal Forms and Unfoldings for Local Dynamical Systems. Springer. ISBN 978-0-387-21785-7.
References
Strogatz, Steven. "Nonlinear Dynamics and Chaos". Westview Press, 2001. p. 52. ↩