Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Alternant matrix
Matrix formed by applying a finite list of functions pointwise to a fixed column of inputs

In linear algebra, an alternant matrix is a matrix formed by applying a finite list of functions pointwise to a fixed column of inputs. An alternant determinant is the determinant of a square alternant matrix.

Generally, if f 1 , f 2 , … , f n {\displaystyle f_{1},f_{2},\dots ,f_{n}} are functions from a set X {\displaystyle X} to a field F {\displaystyle F} , and α 1 , α 2 , … , α m ∈ X {\displaystyle {\alpha _{1},\alpha _{2},\ldots ,\alpha _{m}}\in X} , then the alternant matrix has size m × n {\displaystyle m\times n} and is defined by

M = [ f 1 ( α 1 ) f 2 ( α 1 ) ⋯ f n ( α 1 ) f 1 ( α 2 ) f 2 ( α 2 ) ⋯ f n ( α 2 ) f 1 ( α 3 ) f 2 ( α 3 ) ⋯ f n ( α 3 ) ⋮ ⋮ ⋱ ⋮ f 1 ( α m ) f 2 ( α m ) ⋯ f n ( α m ) ] {\displaystyle M={\begin{bmatrix}f_{1}(\alpha _{1})&f_{2}(\alpha _{1})&\cdots &f_{n}(\alpha _{1})\\f_{1}(\alpha _{2})&f_{2}(\alpha _{2})&\cdots &f_{n}(\alpha _{2})\\f_{1}(\alpha _{3})&f_{2}(\alpha _{3})&\cdots &f_{n}(\alpha _{3})\\\vdots &\vdots &\ddots &\vdots \\f_{1}(\alpha _{m})&f_{2}(\alpha _{m})&\cdots &f_{n}(\alpha _{m})\\\end{bmatrix}}}

or, more compactly, M i j = f j ( α i ) {\displaystyle M_{ij}=f_{j}(\alpha _{i})} . (Some authors use the transpose of the above matrix.) Examples of alternant matrices include Vandermonde matrices, for which f j ( α ) = α j − 1 {\displaystyle f_{j}(\alpha )=\alpha ^{j-1}} , and Moore matrices, for which f j ( α ) = α q j − 1 {\displaystyle f_{j}(\alpha )=\alpha ^{q^{j-1}}} .

We don't have any images related to Alternant matrix yet.
We don't have any YouTube videos related to Alternant matrix yet.
We don't have any PDF documents related to Alternant matrix yet.
We don't have any Books related to Alternant matrix yet.
We don't have any archived web articles related to Alternant matrix yet.

Properties

  • The alternant can be used to check the linear independence of the functions f 1 , f 2 , … , f n {\displaystyle f_{1},f_{2},\dots ,f_{n}} in function space. For example, let f 1 ( x ) = sin ⁡ ( x ) {\displaystyle f_{1}(x)=\sin(x)} , f 2 ( x ) = cos ⁡ ( x ) {\displaystyle f_{2}(x)=\cos(x)} and choose α 1 = 0 , α 2 = π / 2 {\displaystyle \alpha _{1}=0,\alpha _{2}=\pi /2} . Then the alternant is the matrix [ 0 1 1 0 ] {\displaystyle \left[{\begin{smallmatrix}0&1\\1&0\end{smallmatrix}}\right]} and the alternant determinant is − 1 ≠ 0 {\displaystyle -1\neq 0} . Therefore M is invertible and the vectors { sin ⁡ ( x ) , cos ⁡ ( x ) } {\displaystyle \{\sin(x),\cos(x)\}} form a basis for their spanning set: in particular, sin ⁡ ( x ) {\displaystyle \sin(x)} and cos ⁡ ( x ) {\displaystyle \cos(x)} are linearly independent.
  • Linear dependence of the columns of an alternant does not imply that the functions are linearly dependent in function space. For example, let f 1 ( x ) = sin ⁡ ( x ) {\displaystyle f_{1}(x)=\sin(x)} , f 2 = cos ⁡ ( x ) {\displaystyle f_{2}=\cos(x)} and choose α 1 = 0 , α 2 = π {\displaystyle \alpha _{1}=0,\alpha _{2}=\pi } . Then the alternant is [ 0 1 0 − 1 ] {\displaystyle \left[{\begin{smallmatrix}0&1\\0&-1\end{smallmatrix}}\right]} and the alternant determinant is 0, but we have already seen that sin ⁡ ( x ) {\displaystyle \sin(x)} and cos ⁡ ( x ) {\displaystyle \cos(x)} are linearly independent.
  • Despite this, the alternant can be used to find a linear dependence if it is already known that one exists. For example, we know from the theory of partial fractions that there are real numbers A and B for which A x + 1 + B x + 2 = 1 ( x + 1 ) ( x + 2 ) {\displaystyle {\frac {A}{x+1}}+{\frac {B}{x+2}}={\frac {1}{(x+1)(x+2)}}} . Choosing f 1 ( x ) = 1 x + 1 {\displaystyle f_{1}(x)={\frac {1}{x+1}}} , f 2 ( x ) = 1 x + 2 {\displaystyle f_{2}(x)={\frac {1}{x+2}}} , f 3 ( x ) = 1 ( x + 1 ) ( x + 2 ) {\displaystyle f_{3}(x)={\frac {1}{(x+1)(x+2)}}} and ( α 1 , α 2 , α 3 ) = ( 1 , 2 , 3 ) {\displaystyle (\alpha _{1},\alpha _{2},\alpha _{3})=(1,2,3)} , we obtain the alternant [ 1 / 2 1 / 3 1 / 6 1 / 3 1 / 4 1 / 12 1 / 4 1 / 5 1 / 20 ] ∼ [ 1 0 1 0 1 − 1 0 0 0 ] {\displaystyle {\begin{bmatrix}1/2&1/3&1/6\\1/3&1/4&1/12\\1/4&1/5&1/20\end{bmatrix}}\sim {\begin{bmatrix}1&0&1\\0&1&-1\\0&0&0\end{bmatrix}}} . Therefore, ( 1 , − 1 , − 1 ) {\displaystyle (1,-1,-1)} is in the nullspace of the matrix: that is, f 1 − f 2 − f 3 = 0 {\displaystyle f_{1}-f_{2}-f_{3}=0} . Moving f 3 {\displaystyle f_{3}} to the other side of the equation gives the partial fraction decomposition A = 1 , B = − 1 {\displaystyle A=1,B=-1} .
  • If n = m {\displaystyle n=m} and α i = α j {\displaystyle \alpha _{i}=\alpha _{j}} for any i ≠ j {\displaystyle i\neq j} , then the alternant determinant is zero (as a row is repeated).
  • If n = m {\displaystyle n=m} and the functions f j ( x ) {\displaystyle f_{j}(x)} are all polynomials, then ( α j − α i ) {\displaystyle (\alpha _{j}-\alpha _{i})} divides the alternant determinant for all 1 ≤ i < j ≤ n {\displaystyle 1\leq i<j\leq n} . In particular, if V is a Vandermonde matrix, then ∏ i < j ( α j − α i ) = det V {\textstyle \prod _{i<j}(\alpha _{j}-\alpha _{i})=\det V} divides such polynomial alternant determinants. The ratio det M det V {\textstyle {\frac {\det M}{\det V}}} is therefore a polynomial in α 1 , … , α m {\displaystyle \alpha _{1},\ldots ,\alpha _{m}} called the bialternant. The Schur polynomial s ( λ 1 , … , λ n ) {\displaystyle s_{(\lambda _{1},\dots ,\lambda _{n})}} is classically defined as the bialternant of the polynomials f j ( x ) = x λ j {\displaystyle f_{j}(x)=x^{\lambda _{j}}} .

Applications

See also