Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Banach lattice
Banach space with a compatible structure of a lattice

In the mathematical disciplines of in functional analysis and order theory, a Banach lattice (X,‖·‖) is a complete normed vector space with a lattice order, ≤ {\displaystyle \leq } , such that for all x, yX, the implication | x | ≤ | y | ⇒ ‖ x ‖ ≤ ‖ y ‖ {\displaystyle {|x|\leq |y|}\Rightarrow {\|x\|\leq \|y\|}} holds, where the absolute value |·| is defined as | x | = x ∨ − x := sup { x , − x } . {\displaystyle |x|=x\vee -x:=\sup\{x,-x\}{\text{.}}}

We don't have any images related to Banach lattice yet.
We don't have any YouTube videos related to Banach lattice yet.
We don't have any PDF documents related to Banach lattice yet.
We don't have any Books related to Banach lattice yet.
We don't have any archived web articles related to Banach lattice yet.

Examples and constructions

Banach lattices are extremely common in functional analysis, and "every known example [in 1948] of a Banach space [was] also a vector lattice."1 In particular:

  • ℝ, together with its absolute value as a norm, is a Banach lattice.
  • Let X be a topological space, Y a Banach lattice and 𝒞(X,Y) the space of continuous bounded functions from X to Y with norm ‖ f ‖ ∞ = sup x ∈ X ‖ f ( x ) ‖ Y . {\displaystyle \|f\|_{\infty }=\sup _{x\in X}\|f(x)\|_{Y}{\text{.}}} Then 𝒞(X,Y) is a Banach lattice under the pointwise partial order: f ≤ g ⇔ ( ∀ x ∈ X ) ( f ( x ) ≤ g ( x ) ) . {\displaystyle {f\leq g}\Leftrightarrow (\forall x\in X)(f(x)\leq g(x)){\text{.}}}

Examples of non-lattice Banach spaces are now known; James' space is one such.2

Properties

The continuous dual space of a Banach lattice is equal to its order dual.3

Every Banach lattice admits a continuous approximation to the identity.4

Abstract (L)-spaces

A Banach lattice satisfying the additional condition f , g ≥ 0 ⇒ ‖ f + g ‖ = ‖ f ‖ + ‖ g ‖ {\displaystyle {f,g\geq 0}\Rightarrow \|f+g\|=\|f\|+\|g\|} is called an abstract (L)-space. Such spaces, under the assumption of separability, are isomorphic to closed sublattices of L1([0,1]).5 The classical mean ergodic theorem and Poincaré recurrence generalize to abstract (L)-spaces.6

See also

Footnotes

Bibliography

  • Abramovich, Yuri A.; Aliprantis, C. D. (2002). An Invitation to Operator Theory. Graduate Studies in Mathematics. Vol. 50. American Mathematical Society. ISBN 0-8218-2146-6.
  • Birkhoff, Garrett (1948). Lattice Theory. AMS Colloquium Publications 25 (Revised ed.). New York City: AMS. hdl:2027/iau.31858027322886 – via HathiTrust.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.

References

  1. Birkhoff 1948, p. 246. - Birkhoff, Garrett (1948). Lattice Theory. AMS Colloquium Publications 25 (Revised ed.). New York City: AMS. hdl:2027/iau.31858027322886 – via HathiTrust. https://hdl.handle.net/2027/iau.31858027322886

  2. Kania, Tomasz (12 April 2017). Answer to "Banach space that is not a Banach lattice" (accessed 13 August 2022). Mathematics StackExchange. StackOverflow. https://math.stackexchange.com/a/2230649

  3. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  4. Birkhoff 1948, p. 251. - Birkhoff, Garrett (1948). Lattice Theory. AMS Colloquium Publications 25 (Revised ed.). New York City: AMS. hdl:2027/iau.31858027322886 – via HathiTrust. https://hdl.handle.net/2027/iau.31858027322886

  5. Birkhoff 1948, pp. 250, 254. - Birkhoff, Garrett (1948). Lattice Theory. AMS Colloquium Publications 25 (Revised ed.). New York City: AMS. hdl:2027/iau.31858027322886 – via HathiTrust. https://hdl.handle.net/2027/iau.31858027322886

  6. Birkhoff 1948, pp. 269–271. - Birkhoff, Garrett (1948). Lattice Theory. AMS Colloquium Publications 25 (Revised ed.). New York City: AMS. hdl:2027/iau.31858027322886 – via HathiTrust. https://hdl.handle.net/2027/iau.31858027322886