Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Hermite transform

In mathematics, the Hermite transform is an integral transform named after the mathematician Charles Hermite that uses Hermite polynomials H n ( x ) {\displaystyle H_{n}(x)} as kernels of the transform.

The Hermite transform H { F ( x ) } ≡ f H ( n ) {\displaystyle H\{F(x)\}\equiv f_{H}(n)} of a function F ( x ) {\displaystyle F(x)} is H { F ( x ) } ≡ f H ( n ) = ∫ − ∞ ∞ e − x 2   H n ( x )   F ( x )   d x {\displaystyle H\{F(x)\}\equiv f_{H}(n)=\int _{-\infty }^{\infty }e^{-x^{2}}\ H_{n}(x)\ F(x)\ dx}

The inverse Hermite transform H − 1 { f H ( n ) } {\displaystyle H^{-1}\{f_{H}(n)\}} is given by H − 1 { f H ( n ) } ≡ F ( x ) = ∑ n = 0 ∞ 1 π 2 n n ! f H ( n ) H n ( x ) {\displaystyle H^{-1}\{f_{H}(n)\}\equiv F(x)=\sum _{n=0}^{\infty }{\frac {1}{{\sqrt {\pi }}2^{n}n!}}f_{H}(n)H_{n}(x)}

We don't have any images related to Hermite transform yet.
We don't have any YouTube videos related to Hermite transform yet.
We don't have any PDF documents related to Hermite transform yet.
We don't have any Books related to Hermite transform yet.
We don't have any archived web articles related to Hermite transform yet.

Some Hermite transform pairs

F ( x ) {\displaystyle F(x)\,} f H ( n ) {\displaystyle f_{H}(n)\,}
x m {\displaystyle x^{m}} { m ! π 2 m − n ( m − n 2 ) ! , ( m − n )  even and ≥ 0 0 , otherwise {\displaystyle {\begin{cases}{\frac {m!{\sqrt {\pi }}}{2^{m-n}\left({\frac {m-n}{2}}\right)!}},&(m-n){\text{ even and}}\geq 0\\0,&{\text{otherwise}}\end{cases}}} 1
e a x {\displaystyle e^{ax}\,} π a n e a 2 / 4 {\displaystyle {\sqrt {\pi }}a^{n}e^{a^{2}/4}\,}
e 2 x t − t 2 ,   | t | < 1 2 {\displaystyle e^{2xt-t^{2}},\ |t|<{\frac {1}{2}}\,} π ( 2 t ) n {\displaystyle {\sqrt {\pi }}(2t)^{n}}
H m ( x ) {\displaystyle H_{m}(x)\,} π 2 n n ! δ n m {\displaystyle {\sqrt {\pi }}2^{n}n!\delta _{nm}\,}
x 2 H m ( x ) {\displaystyle x^{2}H_{m}(x)\,} 2 n n ! π { 1 , n = m + 2 ( n + 1 2 ) , n = m ( n + 1 ) ( n + 2 ) , n = m − 2 0 , otherwise {\displaystyle 2^{n}n!{\sqrt {\pi }}{\begin{cases}1,&n=m+2\\\left(n+{\frac {1}{2}}\right),&n=m\\(n+1)(n+2),&n=m-2\\0,&{\text{otherwise}}\end{cases}}}
e − x 2 H m ( x ) {\displaystyle e^{-x^{2}}H_{m}(x)\,} ( − 1 ) p − m 2 p − 1 / 2 Γ ( p + 1 / 2 ) ,   m + n = 2 p ,   p ∈ Z {\displaystyle \left(-1\right)^{p-m}2^{p-1/2}\Gamma (p+1/2),\ m+n=2p,\ p\in \mathbb {Z} }
H m 2 ( x ) {\displaystyle H_{m}^{2}(x)\,} { 2 m + n / 2 π ( m n / 2 ) m ! n ! ( n / 2 ) ! , n  even and ≤ 2 m 0 , otherwise {\displaystyle {\begin{cases}2^{m+n/2}{\sqrt {\pi }}{\binom {m}{n/2}}{\frac {m!n!}{(n/2)!}},&n{\text{ even and}}\leq 2m\\0,&{\text{otherwise}}\end{cases}}} 2
H m ( x ) H p ( x ) {\displaystyle H_{m}(x)H_{p}(x)\,} { 2 k π m ! n ! p ! ( k − m ) ! ( k − n ) ! ( k − p ) ! , n + m + p = 2 k ,   k ∈ Z ;   | m − p | ≤ n ≤ m + p 0 , otherwise {\displaystyle {\begin{cases}{\frac {2^{k}{\sqrt {\pi }}m!n!p!}{(k-m)!(k-n)!(k-p)!}},&n+m+p=2k,\ k\in \mathbb {Z} ;\ |m-p|\leq n\leq m+p\\0,&{\text{otherwise}}\end{cases}}\,} 3
H n + p + q ( x ) H p ( x ) H q ( x ) {\displaystyle H_{n+p+q}(x)H_{p}(x)H_{q}(x)\,} π 2 n + p + q ( n + p + q ) ! {\displaystyle {\sqrt {\pi }}2^{n+p+q}(n+p+q)!\,}
d m d x m F ( x ) {\displaystyle {\frac {d^{m}}{dx^{m}}}F(x)\,} f H ( n + m ) {\displaystyle f_{H}(n+m)\,}
x d m d x m F ( x ) {\displaystyle x{\frac {d^{m}}{dx^{m}}}F(x)\,} n f H ( n + m − 1 ) + 1 2 f H ( n + m + 1 ) {\displaystyle nf_{H}(n+m-1)+{\frac {1}{2}}f_{H}(n+m+1)\,}
e x 2 d d x [ e − x 2 d d x F ( x ) ] {\displaystyle e^{x^{2}}{\frac {d}{dx}}\left[e^{-x^{2}}{\frac {d}{dx}}F(x)\right]\,} − 2 n f H ( n ) {\displaystyle -2nf_{H}(n)\,}
F ( x − x 0 ) {\displaystyle F(x-x_{0})} π ∑ k = 0 ∞ ( − x 0 ) k k ! f H ( n + k ) {\displaystyle {\sqrt {\pi }}\sum _{k=0}^{\infty }{\frac {(-x_{0})^{k}}{k!}}f_{H}(n+k)}
F ( x ) ∗ G ( x ) {\displaystyle F(x)*G(x)\,} π ( − 1 ) n [ 2 2 n + 1 Γ ( n + 3 2 ) ] − 1 f H ( n ) g H ( n ) {\displaystyle {\sqrt {\pi }}(-1)^{n}\left[2^{2n+1}\Gamma \left(n+{\frac {3}{2}}\right)\right]^{-1}f_{H}(n)g_{H}(n)\,} 4
e z 2 sin ⁡ ( x z ) ,   | z | < 1 2   {\displaystyle e^{z^{2}}\sin(xz),\ |z|<{\frac {1}{2}}\ \,} { π ( − 1 ) ⌊ n 2 ⌋ ( 2 z ) n , n o d d 0 , n e v e n {\displaystyle {\begin{cases}{\sqrt {\pi }}(-1)^{\lfloor {\frac {n}{2}}\rfloor }(2z)^{n},&n\,\mathrm {odd} \\0,&n\,\mathrm {even} \end{cases}}\,}
( 1 − z 2 ) − 1 / 2 exp ⁡ [ 2 x y z − ( x 2 + y 2 ) z 2 ( 1 − z 2 ) ] {\displaystyle (1-z^{2})^{-1/2}\exp \left[{\frac {2xyz-(x^{2}+y^{2})z^{2}}{(1-z^{2})}}\right]\,} π z n H n ( y ) {\displaystyle {\sqrt {\pi }}z^{n}H_{n}(y)} 56
H m ( y ) H m + 1 ( x ) − H m ( x ) H m + 1 ( y ) 2 m + 1 m ! ( x − y ) {\displaystyle {\frac {H_{m}(y)H_{m+1}(x)-H_{m}(x)H_{m+1}(y)}{2^{m+1}m!(x-y)}}} { π H n ( y ) n ≤ m 0 n > m {\displaystyle {\begin{cases}{\sqrt {\pi }}H_{n}(y)&n\leq m\\0&n>m\end{cases}}}

Sources

References

  1. McCully, Joseph Courtney; Churchill, Ruel Vance (1953), Hermite and Laguerre integral transforms : preliminary report http://deepblue.lib.umich.edu/handle/2027.42/6521

  2. Feldheim, Ervin (1938). "Quelques nouvelles relations pour les polynomes d'Hermite". Journal of the London Mathematical Society (in French). s1-13: 22–29. doi:10.1112/jlms/s1-13.1.22. /wiki/Doi_(identifier)

  3. Bailey, W. N. (1939). "On Hermite polynomials and associated Legendre functions". Journal of the London Mathematical Society. s1-14 (4): 281–286. doi:10.1112/jlms/s1-14.4.281. /wiki/Doi_(identifier)

  4. Glaeske, Hans-Jürgen (1983). "On a convolution structure of a generalized Hermite transformation" (PDF). Serdica Bulgariacae Mathematicae Publicationes. 9 (2): 223–229. http://www.math.bas.bg/serdica/1983/1983-223-229.pdf

  5. Erdélyi et al. 1955, p. 194, 10.13 (22). - Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz [in German]; Tricomi, Francesco G. (1955), Higher transcendental functions (PDF), vol. II, McGraw-Hill, ISBN 978-0-07-019546-2, archived from the original (PDF) on 2011-07-14, retrieved 2023-11-09 https://web.archive.org/web/20110714210423/http://apps.nrbook.com/bateman/Vol2.pdf

  6. Mehler, F. G. (1866), "Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung" [On the development of a function of arbitrarily many variables according to higher-order Laplace functions], Journal für die Reine und Angewandte Mathematik (in German) (66): 161–176, ISSN 0075-4102, ERAM 066.1720cj. See p. 174, eq. (18) and p. 173, eq. (13). http://resolver.sub.uni-goettingen.de/purl?GDZPPN002152975