Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Racah polynomials

In mathematics, Racah polynomials are orthogonal polynomials named after Giulio Racah, as their orthogonality relations are equivalent to his orthogonality relations for Racah coefficients.

The Racah polynomials were first defined by Wilson (1978) and are given by

p n ( x ( x + γ + δ + 1 ) ) = 4 F 3 [ − n n + α + β + 1 − x x + γ + δ + 1 α + 1 γ + 1 β + δ + 1 ; 1 ] . {\displaystyle p_{n}(x(x+\gamma +\delta +1))={}_{4}F_{3}\left[{\begin{matrix}-n&n+\alpha +\beta +1&-x&x+\gamma +\delta +1\\\alpha +1&\gamma +1&\beta +\delta +1\\\end{matrix}};1\right].}
We don't have any images related to Racah polynomials yet.
We don't have any YouTube videos related to Racah polynomials yet.
We don't have any PDF documents related to Racah polynomials yet.
We don't have any Books related to Racah polynomials yet.
We don't have any archived web articles related to Racah polynomials yet.

Orthogonality

∑ y = 0 N R n ⁡ ( x ; α , β , γ , δ ) R m ⁡ ( x ; α , β , γ , δ ) γ + δ + 1 + 2 y γ + δ + 1 + y ω y = h n δ n , m , {\displaystyle \sum _{y=0}^{N}\operatorname {R} _{n}(x;\alpha ,\beta ,\gamma ,\delta )\operatorname {R} _{m}(x;\alpha ,\beta ,\gamma ,\delta ){\frac {\gamma +\delta +1+2y}{\gamma +\delta +1+y}}\omega _{y}=h_{n}\operatorname {\delta } _{n,m},} 1 when α + 1 = − N {\displaystyle \alpha +1=-N} , where R {\displaystyle \operatorname {R} } is the Racah polynomial, x = y ( y + γ + δ + 1 ) , {\displaystyle x=y(y+\gamma +\delta +1),} δ n , m {\displaystyle \operatorname {\delta } _{n,m}} is the Kronecker delta function and the weight functions are ω y = ( α + 1 ) y ( β + δ + 1 ) y ( γ + 1 ) y ( γ + δ + 2 ) y ( − α + γ + δ + 1 ) y ( − β + γ + 1 ) y ( δ + 1 ) y y ! , {\displaystyle \omega _{y}={\frac {(\alpha +1)_{y}(\beta +\delta +1)_{y}(\gamma +1)_{y}(\gamma +\delta +2)_{y}}{(-\alpha +\gamma +\delta +1)_{y}(-\beta +\gamma +1)_{y}(\delta +1)_{y}y!}},} and h n = ( − β ) N ( γ + δ + 1 ) N ( − β + γ + 1 ) N ( δ + 1 ) N ( n + α + β + 1 ) n n ! ( α + β + 2 ) 2 n ( α + δ − γ + 1 ) n ( α − δ + 1 ) n ( β + 1 ) n ( α + 1 ) n ( β + δ + 1 ) n ( γ + 1 ) n , {\displaystyle h_{n}={\frac {(-\beta )_{N}(\gamma +\delta +1)_{N}}{(-\beta +\gamma +1)_{N}(\delta +1)_{N}}}{\frac {(n+\alpha +\beta +1)_{n}n!}{(\alpha +\beta +2)_{2n}}}{\frac {(\alpha +\delta -\gamma +1)_{n}(\alpha -\delta +1)_{n}(\beta +1)_{n}}{(\alpha +1)_{n}(\beta +\delta +1)_{n}(\gamma +1)_{n}}},} ( ⋅ ) n {\displaystyle (\cdot )_{n}} is the Pochhammer symbol.

Rodrigues-type formula

ω ( x ; α , β , γ , δ ) R n ⁡ ( λ ( x ) ; α , β , γ , δ ) = ( γ + δ + 1 ) n ∇ n ∇ λ ( x ) n ω ( x ; α + n , β + n , γ + n , δ ) , {\displaystyle \omega (x;\alpha ,\beta ,\gamma ,\delta )\operatorname {R} _{n}(\lambda (x);\alpha ,\beta ,\gamma ,\delta )=(\gamma +\delta +1)_{n}{\frac {\nabla ^{n}}{\nabla \lambda (x)^{n}}}\omega (x;\alpha +n,\beta +n,\gamma +n,\delta ),} 2 where ∇ {\displaystyle \nabla } is the backward difference operator, λ ( x ) = x ( x + γ + δ + 1 ) . {\displaystyle \lambda (x)=x(x+\gamma +\delta +1).}

Generating functions

There are three generating functions for x ∈ { 0 , 1 , 2 , . . . , N } {\displaystyle x\in \{0,1,2,...,N\}}

when β + δ + 1 = − N {\displaystyle \beta +\delta +1=-N\quad } or γ + 1 = − N , {\displaystyle \quad \gamma +1=-N,} 2 F 1 ( − x , − x + α − γ − δ ; α + 1 ; t ) 2 F 1 ( x + β + δ + 1 , x + γ + 1 ; β + 1 ; t ) {\displaystyle {}_{2}F_{1}(-x,-x+\alpha -\gamma -\delta ;\alpha +1;t){}_{2}F_{1}(x+\beta +\delta +1,x+\gamma +1;\beta +1;t)} = ∑ n = 0 N ( β + δ + 1 ) n ( γ + 1 ) n ( β + 1 ) n n ! R n ⁡ ( λ ( x ) ; α , β , γ , δ ) t n , {\displaystyle \quad =\sum _{n=0}^{N}{\frac {(\beta +\delta +1)_{n}(\gamma +1)_{n}}{(\beta +1)_{n}n!}}\operatorname {R} _{n}(\lambda (x);\alpha ,\beta ,\gamma ,\delta )t^{n},} when α + 1 = − N {\displaystyle \alpha +1=-N\quad } or γ + 1 = − N , {\displaystyle \quad \gamma +1=-N,} 2 F 1 ( − x , − x + β − γ ; β + δ + 1 ; t ) 2 F 1 ( x + α + 1 , x + γ + 1 ; α − δ + 1 ; t ) {\displaystyle {}_{2}F_{1}(-x,-x+\beta -\gamma ;\beta +\delta +1;t){}_{2}F_{1}(x+\alpha +1,x+\gamma +1;\alpha -\delta +1;t)} = ∑ n = 0 N ( α + 1 ) n ( γ + 1 ) n ( α − δ + 1 ) n n ! R n ⁡ ( λ ( x ) ; α , β , γ , δ ) t n , {\displaystyle \quad =\sum _{n=0}^{N}{\frac {(\alpha +1)_{n}(\gamma +1)_{n}}{(\alpha -\delta +1)_{n}n!}}\operatorname {R} _{n}(\lambda (x);\alpha ,\beta ,\gamma ,\delta )t^{n},} when α + 1 = − N {\displaystyle \alpha +1=-N\quad } or β + δ + 1 = − N , {\displaystyle \quad \beta +\delta +1=-N,} 2 F 1 ( − x , − x − δ ; γ + 1 ; t ) 2 F 1 ( x + α + 1 ; x + β + γ + 1 ; α + β − γ + 1 ; t ) {\displaystyle {}_{2}F_{1}(-x,-x-\delta ;\gamma +1;t){}_{2}F_{1}(x+\alpha +1;x+\beta +\gamma +1;\alpha +\beta -\gamma +1;t)} = ∑ n = 0 N ( α + 1 ) n ( β + δ + 1 ) n ( α + β − γ + 1 ) n n ! R n ⁡ ( λ ( x ) ; α , β , γ , δ ) t n . {\displaystyle \quad =\sum _{n=0}^{N}{\frac {(\alpha +1)_{n}(\beta +\delta +1)_{n}}{(\alpha +\beta -\gamma +1)_{n}n!}}\operatorname {R} _{n}(\lambda (x);\alpha ,\beta ,\gamma ,\delta )t^{n}.}

Connection formula for Wilson polynomials

When α = a + b − 1 , β = c + d − 1 , γ = a + d − 1 , δ = a − d , x → − a + i x , {\displaystyle \alpha =a+b-1,\beta =c+d-1,\gamma =a+d-1,\delta =a-d,x\rightarrow -a+ix,}

R n ⁡ ( λ ( − a + i x ) ; a + b − 1 , c + d − 1 , a + d − 1 , a − d ) = W n ⁡ ( x 2 ; a , b , c , d ) ( a + b ) n ( a + c ) n ( a + d ) n , {\displaystyle \operatorname {R} _{n}(\lambda (-a+ix);a+b-1,c+d-1,a+d-1,a-d)={\frac {\operatorname {W} _{n}(x^{2};a,b,c,d)}{(a+b)_{n}(a+c)_{n}(a+d)_{n}}},} where W {\displaystyle \operatorname {W} } are Wilson polynomials.

q-analog

Askey & Wilson (1979) introduced the q-Racah polynomials defined in terms of basic hypergeometric functions by

p n ( q − x + q x + 1 c d ; a , b , c , d ; q ) = 4 ϕ 3 [ q − n a b q n + 1 q − x q x + 1 c d a q b d q c q ; q ; q ] . {\displaystyle p_{n}(q^{-x}+q^{x+1}cd;a,b,c,d;q)={}_{4}\phi _{3}\left[{\begin{matrix}q^{-n}&abq^{n+1}&q^{-x}&q^{x+1}cd\\aq&bdq&cq\\\end{matrix}};q;q\right].}

They are sometimes given with changes of variables as

W n ( x ; a , b , c , N ; q ) = 4 ϕ 3 [ q − n a b q n + 1 q − x c q x − n a q b c q q − N ; q ; q ] . {\displaystyle W_{n}(x;a,b,c,N;q)={}_{4}\phi _{3}\left[{\begin{matrix}q^{-n}&abq^{n+1}&q^{-x}&cq^{x-n}\\aq&bcq&q^{-N}\\\end{matrix}};q;q\right].}

References

  1. Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Wilson Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5

  2. Koekoek, Roelof; Swarttouw, René F. (1998), The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue https://fa.ewi.tudelft.nl/~koekoek/askey/ch1/par2/par2.html