Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Oxonickelates

Nickel forms a series of mixed oxide compounds which are commonly called nickelates. A nickelate is an anion containing nickel or a salt containing a nickelate anion, or a double compound containing nickel bound to oxygen and other elements. Nickel can be in different or even mixed oxidation states, ranging from +1, +2, +3 to +4. The anions can contain a single nickel ion, or multiple to form a cluster ion. The solid mixed oxide compounds are often ceramics, but can also be metallic. They have a variety of electrical and magnetic properties. Rare-earth elements form a range of perovskite nickelates, in which the properties vary systematically as the rare-earth element changes. Fine tuning of properties is achievable with mixtures of elements, applying stress or pressure, or varying the physical form.

Inorganic chemists call many compounds that contain nickel centred anions "nickelates". These include the chloronickelates, fluoronickelates, tetrabromonickelates, tetraiodonickelates, cyanonickelates, nitronickelates and other nickel-organic acid complexes such as oxalatonickelates.

We don't have any images related to Oxonickelates yet.
We don't have any YouTube videos related to Oxonickelates yet.
We don't have any PDF documents related to Oxonickelates yet.
We don't have any Books related to Oxonickelates yet.
We don't have any archived web articles related to Oxonickelates yet.

Alkali nickelates

The lithium nickelates are of interest to researchers as cathodes in lithium cells, as these substance can hold a variable amount of lithium, with the nickel varying in oxidation state.1

Rare-earth nickelates

Rare-earth nickelates were first made by Demazeau et al. in 1971, by heating a mixture of oxides under high pressure oxygen, or potassium perchlorate.2 For two decades after that these nickelates received very little attention.3 Many rare-earth nickelates have the Ruddlesden–Popper phase structure.

Rare-earth nickelates with nickel in a +1 oxidation state have an electronic configuration to same as for cuprates and so are of interest to high-temperature superconductor researchers.456 Other rare-earth nickelates can function as fuel cell catalysts. The ability to switch between an insulating and a conducting state in some of these materials is of interest in the development of new transistors, that have higher on to off current ratios.7

List of oxides

formulanameother namesstructureRemarksreferences
LiNiO2lithium nickelaterhombohedral a = 2.88 Å, c = 14.2 Å, density = 4.78 / 4.818
Li2NiO3monoclinic C2/m a = 4.898 Å, b = 8.449 Å, c = 4.9692 Å, β = 109.02°, V = 194.60 Å3Nickel in +4 state9
NaNiO2sodium nickelatemonoclinic a = 5.33 Å, b = 2.86 Å, c = 5.59 Å, β = 110°30′, Z = 2, density = 4.74; over 220 °C: rhombohedral a = 2.96 Å, b = 15.77 ÅCarbon dissolved in the molten salt can precipitate diamond.1011
KNiO2potassium nickelate1213
SrTiNiO3[dubious – discuss]strontium titanate nickelateSTN14
YNiO3yttrium nickelatemonoclinic P21/n; orthorhombic a = 5.516 Å, b = 7.419 Å, c = 5.178 Å, V = 211.9 Å3, Z = 4, density = 6.13insulator changes to metal under pressure1516
Y2BaNiO5chain nickelateOrthorhombic Immm, a = 3.7589, b = 5.7604, c = 11.33111718
2H-AgNiO2hexagonal P63/mmc, a = 2.93653 Å, b = 2.93653 Å, c = 12.2369 Å, V = 91.384 Å3, Z = 2, density = 7.216 g/cm3Ni in +3 state19
3R-AgNiO2trigonal R32/m, a = 2.9390 Å, c = 18.3700 ÅNi in +3 state2021
Ag2NiO2silveroxonickelatetrigonal R32/m, a = 2.926 Å, c = 24.0888 Ålustrous black solid, stable in air; Ni3+ and subvalent Ag2+22
Ag3Ni2O4hexagonal P63/mmc, a = 2.9331 Å, b = 2.9331 Å, c = 28.31 Å, V = 210.9 Å3, Z = 2, density = 7.951 g/cm3electric conductor23
BaNiO2orthorhombic a = 5.73 Å, b = 9.2 Å, c = 4.73 Å, V = 249 Å3, Z = 4black24
BaNiO3hexagonal a = 5.580 Å, c = 4.832 Å, V = 130.4 Å3, Z = 2black powder dec 730 °C N-type semiconductor; decompose in acid2526
Ba2Ni2O5hexagonal a = 5.72, c = 4.30, density = 6.4black needles melt 1200 °C2728
LaNiO2lanthanum nickelitea = 3.959, c = 3.375Ni in +1 state29
LaNiO3lanthanum nickelatea = 5.4827 Å, b = 5.4827 Å, c = 3.2726 Å, γ = 120°, V = 345.5, Z = 6, density = 7.08metallic, no insulating transition polar metal30
La2NiO4LNtetragonal a = 3.86 Å, b = 3.86 Å, c = 12.67 Å, V = 188.8 Å3, Z = 2, density = 7.053132
La3Ni2O6tetragonal a = 3.968 Å, c = 19.32 Å33
La3Ni2O7a = 5.3961 Å, b = 5.4498 Å, c = 20.522 Å, V = 603.5, Z = 4, density = 7.1superconductor under pressure Tc=80K343536
La4Ni3O8antiferromagnetic below 105 K, mixed valence I and II3738
La4Ni3O1039
La2−xSrxNiO4LSNa varies from 3.86 to 3.81 as x changes from 0 to 0.5, then ≈ 3.81; c ≈ 12.7 for x ≤ 0.8, the it falls to 12.4 at x = 1.2polarization-specific metal40
CeNiO3cerium nickelatedecomposes 1984 °C41
PrNiO242
PrNiO3perovskitemetallic insulator transition=130K43
Pr4Ni3O844
Pr2BaNiO5chain nickelateOrthorhombic45
La2PrNi2O7orthorhombic46
La2PrNi2O7tetragonalSuperconductor under pressure Tc = 82.5°C47
NdNiO3neodymium nickelateperovskite orthorhombic Pbnm, a = 5.38712 Å, b = 5.38267 Å, c = 7.60940 Åmetallic insulator transition=200K4849
NdNiO2orthorhombic a = 5.402 Å, b = 7.608 Å, c = 5.377 Å, V = 221.0 Å3, density = 7.54505152
Nd4Ni3O8orthorhombic a = 3.9171 Å, b = 3.9171 Å, c = 25.307 Å, V = 388.3 Å3, Z = 2, density = 7.545354
Nd2NiO4Cmca a = 5.383 Å, b = 12.342 Å, c = 5.445 Å, V = 361.7 Å3, density = 7.5555
Nd2BaNiO5chain nickelateOrthorhombic Immm, a = 2.8268 Å, b = 5.9272 Å, c = 11.651 Å5657
SmNiO3samarium nickelateSNOperovskite Pnma, a = 5.431 Å, b = 7.568 Å, c = 5.336 Å, V = 219.3 Å, Z = 4, density = 7.79metallic insulator transition=400K5859
Sm1.5Sr0.5NiO4SSNOorthorhombic Bmabgiant dielectric constant 100,00060
EuNiO3europium nickelateperovskite orthorhombic a = 5.466 Å, b = 7.542 Å, c = 5.293 Å, V = 218.2 Å3, Z = 4, density = 7.87metallic insulator transition=460K61
GdNiO3gadolinium nickelateperovskite orthorhombic a = 0.5492 Å, b = 0.7506 Å, c = 0.5258 Å, V = 216.8 Å3, Z = 4, density = 8.09metallic insulator transition=510.9K62
Gd2NiO4digadolinium nickelateOrthorhombic a = 3.851 Å, b = 3.851 Å, c = 6.8817 Å, V = 187.5 Å3, Z = 2, density = 7.7563
BaGd2NiO5barium digadolinium nickelatechain nickellate?orthorhombiclow thermal conductance64
Tb2BaNiO5chain nickelateOrthorhombic65
DyNiO3dysprosium nickelateperovskite orthorhombic a = 0.55 Å, b = 0.7445 Å, c = 0.5212 Å V=213.4 Z=4 density=8.38metallic insulator transition=564.1K666768
Dy2BaNiO5chain nickelateOrthorhombic69
HoNiO3holmium nickelateperovskite orthorhombic a = 3.96 Å, b = 3.96 Å, c = 5.04 Å, V = 212 Å3 Z = 4, density=8.51metallic insulator transition=560K70
Ho2BaNiO5chain nickelateOrthorhombic Immm, a = 3.764 Å, b = 5.761 Å, c=11.336 Å7172
ErNiO3erbium nickelateperovskite orthorhombic a = 5.514 Å, b =7.381 Å, c = 5.16 V=201 Z=4 density=8.67metallic insulator transition=580K7374
Er2BaNiO5chain nickelateOrthorhombic Immm a = 3.7541 Å, b = 5.7442 Å c=11.3019 Å V=243.71 Å3 Z=2757677
TmNiO3thulium nickelateorthorhombic a = 5.495 Å, b = 7.375 Å, c = 5.149 Å V = 208.7 Z = 4 density = 8.7778
Tm2BaNiO5thulium barium nickelateOrthorhombic low temperature Pnma a = 12.2003 Å b = 5.65845 Å c = 6.9745 Å Z = 4; high T: Immm a = 3.75128 b = 5.7214 c = 11.2456Pnma form is brown Immm form is dark green7980
YbNiO3ytterbium nickelateOrthorhombic a = 5.496 Å, b = 7.353 Å, c = 5.131 Å Z=4 V=207.4 Å3 density=8.9681
Yb2BaNiO5ytterbium barium nickelateOrthorhombic Pnma a = 5.6423 Å, b = 6.9545 Å, c = 12.1583 Å V=477.1 Z=4 density=8.66Pnma form is brown82
LuNiO3lutetium nickelateperovskite a = 5.499 Å, b = 7.356 Å, c = 5.117 Å, V = 207 Å3, Z = 4, density = 9.04metallic insulator transition=600K8384
Lu2BaNiO5Orthorhombic Pnma85
TlNiO3thallium nickelate(III)perovskite a = 5.2549 Å, b = 5.3677 Å, c = 7.5620 Å, V = 213.3 Å386
PbNiO3
BiNiO3bismuth nickelate(III)perovskite triclinic a = 5.3852, b = 5.6498, c = 7.7078 Å, α = 91.9529°, β = 89.8097°, γ = 91.5411, V = 234.29 Å3Ni in +2 state, Bi in +3 and +5; stable 5–420K, antiferromagnetic8788

See also

References

  1. Shinova, Elitza; Zhecheva, Ekaterina; Stoyanova, Radostina; Bromiley, Geoffrey D. (May 2005). "High-pressure synthesis of solid solutions between trigonal LiNiO2 and monoclinic Li[Li1/3Ni2/3]O2". Journal of Solid State Chemistry. 178 (5): 1661–1669. Bibcode:2005JSSCh.178.1661S. doi:10.1016/j.jssc.2005.03.007. /wiki/Bibcode_(identifier)

  2. Demazeau, Gérard; Marbeuf, Alain; Pouchard, Michel; Hagenmuller, Paul (November 1971). "Sur une série de composés oxygènes du nickel trivalent derivés de la perovskite". Journal of Solid State Chemistry (in French). 3 (4): 582–589. Bibcode:1971JSSCh...3..582D. doi:10.1016/0022-4596(71)90105-8. /wiki/Bibcode_(identifier)

  3. Alonso, J. A.; Martínez Lope, M. J.; Casais, M. T.; Martínez, J. L.; Demazeau, G.; Largeteau, A.; García Muñoz, J. L.; Muñoz, A.; Fernández-Díaz, M. T. (September 1999). "High-Pressure Preparation, Crystal Structure, Magnetic Properties, and Phase Transitions in GdNiO3 and DyNiO3 Perovskites". Chemistry of Materials. 11 (9): 2463–2469. doi:10.1021/cm991033k. /wiki/Doi_(identifier)

  4. Anisimov, V. I.; Bukhvalov, D.; Rice, T. M. (15 March 1999). "Electronic structure of possible nickelate analogs to the cuprates". Physical Review B. 59 (12): 7901–7906. Bibcode:1999PhRvB..59.7901A. doi:10.1103/PhysRevB.59.7901. /wiki/Bibcode_(identifier)

  5. Li, Danfeng; Lee, Kyuho; Wang, Bai Yang; Osada, Motoki; Crossley, Samuel; Lee, Hye Ryoung; Cui, Yi; Hikita, Yasuyuki; Hwang, Harold Y. (29 August 2019). "Superconductivity in an infinite-layer nickelate". Nature. 572 (7771): 624–627. Bibcode:2019Natur.572..624L. doi:10.1038/s41586-019-1496-5. OSTI 1562463. PMID 31462797. /wiki/Bibcode_(identifier)

  6. Botana, A. S.; Bernardini, F.; Cano, A. (2021). "Nickelate superconductors: an ongoing dialog between theory and experiments". Journal of Experimental and Theoretical Physics. 132 (4): 618–627. arXiv:2012.02764. Bibcode:2021JETP..132..618B. doi:10.1134/S1063776121040026. /wiki/ArXiv_(identifier)

  7. Notman, Nina (December 2014). "Edging towards silicon-free transistors". Materials Today. 17 (10): 473. doi:10.1016/j.mattod.2014.10.034. https://doi.org/10.1016%2Fj.mattod.2014.10.034

  8. Dyer, Lawrence D.; Borie, Bernard S.; Smith, G. Pedro (March 1954). "Alkali Metal-Nickel Oxides of the Type MNiO2". Journal of the American Chemical Society. 76 (6): 1499–1503. Bibcode:1954JAChS..76.1499D. doi:10.1021/ja01635a012. /wiki/Bibcode_(identifier)

  9. Shinova, Elitza; Zhecheva, Ekaterina; Stoyanova, Radostina; Bromiley, Geoffrey D. (May 2005). "High-pressure synthesis of solid solutions between trigonal LiNiO2 and monoclinic Li[Li1/3Ni2/3]O2". Journal of Solid State Chemistry. 178 (5): 1661–1669. Bibcode:2005JSSCh.178.1661S. doi:10.1016/j.jssc.2005.03.007. /wiki/Bibcode_(identifier)

  10. Dyer, Lawrence D.; Borie, Bernard S.; Smith, G. Pedro (March 1954). "Alkali Metal-Nickel Oxides of the Type MNiO2". Journal of the American Chemical Society. 76 (6): 1499–1503. Bibcode:1954JAChS..76.1499D. doi:10.1021/ja01635a012. /wiki/Bibcode_(identifier)

  11. Komath, M.; Cherian, K. A.; Kulkarni, S. K.; Ray, A. (1994). "The role of sodium nickelate in the metastable recrystallization of diamond". Diamond and Related Materials. 4 (1): 20–25. Bibcode:1994DRM.....4...20K. doi:10.1016/0925-9635(94)90064-7. /wiki/Bibcode_(identifier)

  12. Dyer, Lawrence D.; Borie, Bernard S.; Smith, G. Pedro (March 1954). "Alkali Metal-Nickel Oxides of the Type MNiO2". Journal of the American Chemical Society. 76 (6): 1499–1503. Bibcode:1954JAChS..76.1499D. doi:10.1021/ja01635a012. /wiki/Bibcode_(identifier)

  13. Hofmann, K. A.; Hiendlmaier, H. (July 1906). "Sauerstoffübertragung durch brennendes Kalium". Berichte der Deutschen Chemischen Gesellschaft. 39 (3): 3184–3187. doi:10.1002/cber.190603903136. https://zenodo.org/record/1426184

  14. Lee, Ke-Jing; Wang, Li-Wen; Chiang, Te-Kung; Wang, Yeong-Her (26 October 2015). "Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory". Materials. 8 (10): 7191–7198. Bibcode:2015Mate....8.7191L. doi:10.3390/ma8105374. PMC 5455395. PMID 28793630. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455395

  15. García Muñoz, J. L.; Amboage, M.; Hanfland, M.; Alonso, J. A.; Martínez Lope, M. J.; Mortimer, R. (March 2003). "Pressure-induced melting of charge-order in the self-doped mott insulator yttrium nickelate". High Pressure Research. 23 (1–2): 171–175. Bibcode:2003HPR....23..171G. doi:10.1080/0895795031000114430. /wiki/Bibcode_(identifier)

  16. Yamamoto, Susumu; Fujiwara, Takeo (June 2002). "Symmetry consideration and eg bands in NdNiO3 and YNiO3". Journal of Physics and Chemistry of Solids. 63 (6–8): 1347–1351. arXiv:cond-mat/0110431. Bibcode:2002JPCS...63.1347Y. doi:10.1016/S0022-3697(02)00085-9. /wiki/ArXiv_(identifier)

  17. Popova, M. N.; Romanov, E. A.; Klimin, S. A.; Chukalina, E. P.; Mill, B. V.; Dhalenne, G. (2005). "Stark Structure and Exchange Splittings of Nd3+ Ion Levels in Chain Nickelate Nd2BaNiO5". Physics of the Solid State. 47 (8): 1497–1503. Bibcode:2005PhSS...47.1497P. doi:10.1134/1.2014500. /wiki/Bibcode_(identifier)

  18. Alonso, J. A.; Rasines, I.; Rodriguez-Carvajal, J.; Torrance, J. B. (April 1994). "Hole and Electron Doping of R2BaNiO5 (R = Rare Earths)". Journal of Solid State Chemistry. 109 (2): 231–240. Bibcode:1994JSSCh.109..231A. doi:10.1006/jssc.1994.1098. /wiki/Bibcode_(identifier)

  19. Sörgel, Timo; Jansen, Martin (November 2005). "Eine neue, hexagonale Modifikation von AgNiO2" [A New Hexagonal Modification of AgNiO2]. Zeitschrift für Anorganische und Allgemeine Chemie (in German). 631 (15): 2970–2972. doi:10.1002/zaac.200500295. /wiki/Doi_(identifier)

  20. Sörgel, Timo; Jansen, Martin (November 2005). "Eine neue, hexagonale Modifikation von AgNiO2" [A New Hexagonal Modification of AgNiO2]. Zeitschrift für Anorganische und Allgemeine Chemie (in German). 631 (15): 2970–2972. doi:10.1002/zaac.200500295. /wiki/Doi_(identifier)

  21. Schreyer, Martin; Jansen, Martin (15 February 2002). "Synthesis and Characterization of Ag2NiO2 Showing an Uncommon Charge Distribution". Angewandte Chemie. 114 (4): 665–668. Bibcode:2002AngCh.114..665S. doi:10.1002/1521-3757(20020215)114:4<665::AID-ANGE665>3.0.CO;2-Z. /wiki/Bibcode_(identifier)

  22. Schreyer, Martin; Jansen, Martin (15 February 2002). "Synthesis and Characterization of Ag2NiO2 Showing an Uncommon Charge Distribution". Angewandte Chemie. 114 (4): 665–668. Bibcode:2002AngCh.114..665S. doi:10.1002/1521-3757(20020215)114:4<665::AID-ANGE665>3.0.CO;2-Z. /wiki/Bibcode_(identifier)

  23. Sörgel, Timo; Jansen, Martin (January 2007). "Ag3Ni2O4—A new stage-2 intercalation compound of 2H–AgNiO2 and physical properties of 2H–AgNiO2 above ambient temperature". Journal of Solid State Chemistry. 180 (1): 8–15. Bibcode:2007JSSCh.180....8S. doi:10.1016/j.jssc.2006.08.033. /wiki/Bibcode_(identifier)

  24. Lander, J. J. (1 March 1951). "The crystal structures of NiO·3BaO, NiO·BaO, BaNiO3 and intermediate phases with composition near Ba2Ni2O5; with a note on NiO". Acta Crystallographica. 4 (2): 148–156. doi:10.1107/S0365110X51000441. /wiki/Doi_(identifier)

  25. Lander, J. J. (1 March 1951). "The crystal structures of NiO·3BaO, NiO·BaO, BaNiO3 and intermediate phases with composition near Ba2Ni2O5; with a note on NiO". Acta Crystallographica. 4 (2): 148–156. doi:10.1107/S0365110X51000441. /wiki/Doi_(identifier)

  26. Lander, J. J.; Wooten, L. A. (June 1951). "Barium-Nickel Oxides with Tri- and Tetravalent Nickel". Journal of the American Chemical Society. 73 (6): 2452–2454. Bibcode:1951JAChS..73.2452L. doi:10.1021/ja01150a013. /wiki/Bibcode_(identifier)

  27. Lander, J. J. (1 March 1951). "The crystal structures of NiO·3BaO, NiO·BaO, BaNiO3 and intermediate phases with composition near Ba2Ni2O5; with a note on NiO". Acta Crystallographica. 4 (2): 148–156. doi:10.1107/S0365110X51000441. /wiki/Doi_(identifier)

  28. Lander, J. J.; Wooten, L. A. (June 1951). "Barium-Nickel Oxides with Tri- and Tetravalent Nickel". Journal of the American Chemical Society. 73 (6): 2452–2454. Bibcode:1951JAChS..73.2452L. doi:10.1021/ja01150a013. /wiki/Bibcode_(identifier)

  29. Crespin, M.; Isnard, O.; Dubois, F.; Choisnet, J.; Odier, P. (April 2005). "LaNiO2: Synthesis and structural characterization". Journal of Solid State Chemistry. 178 (4): 1326–1334. Bibcode:2005JSSCh.178.1326C. doi:10.1016/j.jssc.2005.01.023. /wiki/Bibcode_(identifier)

  30. "Atom Work Inorganic Material Database". Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=17008&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4295017684&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+La&need_more_type=prototype_number&material_id=4295279810&page=1&isConditionValueError=false

  31. Poltavets, Viktor V.; Lokshin, Konstantin A.; Dikmen, Sibel; Croft, Mark; Egami, Takeshi; Greenblatt, Martha (July 2006). "La2Ni2O6: A New Double T′-type Nickelate with Infinite Ni1+/2+O2 Layers". Journal of the American Chemical Society. 128 (28): 9050–9051. Bibcode:2006JAChS.128.9050P. doi:10.1021/ja063031o. PMID 16834375. /wiki/Bibcode_(identifier)

  32. "La2NiO4 in K2NiF4 structure". Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=16575&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4295032442&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+La&need_more_type=prototype_number&material_id=4295525150&page=1&isConditionValueError=false

  33. Poltavets, Viktor V.; Lokshin, Konstantin A.; Dikmen, Sibel; Croft, Mark; Egami, Takeshi; Greenblatt, Martha (July 2006). "La2Ni2O6: A New Double T′-type Nickelate with Infinite Ni1+/2+O2 Layers". Journal of the American Chemical Society. 128 (28): 9050–9051. Bibcode:2006JAChS.128.9050P. doi:10.1021/ja063031o. PMID 16834375. /wiki/Bibcode_(identifier)

  34. Poltavets, Viktor V.; Lokshin, Konstantin A.; Dikmen, Sibel; Croft, Mark; Egami, Takeshi; Greenblatt, Martha (July 2006). "La2Ni2O6: A New Double T′-type Nickelate with Infinite Ni1+/2+O2 Layers". Journal of the American Chemical Society. 128 (28): 9050–9051. Bibcode:2006JAChS.128.9050P. doi:10.1021/ja063031o. PMID 16834375. /wiki/Bibcode_(identifier)

  35. "Details of Selected Material Inorganic Materials Database". Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=39897&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4295028865&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+La&need_more_type=prototype_number&material_id=4296371207&page=1&isConditionValueError=false

  36. Sun, Hualei; Huo, Mengwu; Hu, Xunwu; Li, Jingyuan; Liu, Zengjia; Han, Yifeng; Tang, Lingyun; Mao, Zhongquan; Yang, Pengtao; Wang, Bosen; Cheng, Jinguang; Yao, Dao-Xin; Zhang, Guang-Ming; Wang, Meng (21 September 2023). "Signatures of superconductivity near 80 K in a nickelate under high pressure". Nature. 621 (7979): 493–498. arXiv:2305.09586. Bibcode:2023Natur.621..493S. doi:10.1038/s41586-023-06408-7. PMID 37437603. /wiki/ArXiv_(identifier)

  37. Poltavets, Viktor V.; Lokshin, Konstantin A.; Dikmen, Sibel; Croft, Mark; Egami, Takeshi; Greenblatt, Martha (July 2006). "La2Ni2O6: A New Double T′-type Nickelate with Infinite Ni1+/2+O2 Layers". Journal of the American Chemical Society. 128 (28): 9050–9051. Bibcode:2006JAChS.128.9050P. doi:10.1021/ja063031o. PMID 16834375. /wiki/Bibcode_(identifier)

  38. Poltavets, Viktor V.; Lokshin, Konstantin A.; Nevidomskyy, Andriy H.; Croft, Mark; Tyson, Trevor A.; Hadermann, Joke; Van Tendeloo, Gustaaf; Egami, Takeshi; Kotliar, Gabriel; ApRoberts-Warren, Nicholas; Dioguardi, Adam P.; Curro, Nicholas J.; Greenblatt, Martha (19 May 2010). "Bulk Magnetic Order in a Two-Dimensional Ni1+ / Ni2+ (d9 / d8) Nickelate, Isoelectronic with Superconducting Cuprates". Physical Review Letters. 104 (20): 206403. arXiv:1003.3276. Bibcode:2010PhRvL.104t6403P. doi:10.1103/PhysRevLett.104.206403. PMID 20867044. /wiki/ArXiv_(identifier)

  39. Poltavets, Viktor V.; Lokshin, Konstantin A.; Nevidomskyy, Andriy H.; Croft, Mark; Tyson, Trevor A.; Hadermann, Joke; Van Tendeloo, Gustaaf; Egami, Takeshi; Kotliar, Gabriel; ApRoberts-Warren, Nicholas; Dioguardi, Adam P.; Curro, Nicholas J.; Greenblatt, Martha (19 May 2010). "Bulk Magnetic Order in a Two-Dimensional Ni1+ / Ni2+ (d9 / d8) Nickelate, Isoelectronic with Superconducting Cuprates". Physical Review Letters. 104 (20): 206403. arXiv:1003.3276. Bibcode:2010PhRvL.104t6403P. doi:10.1103/PhysRevLett.104.206403. PMID 20867044. /wiki/ArXiv_(identifier)

  40. Sreedhar, K.; Rao, C. N. R. (October 1990). "Electrical and magnetic properties of La2−xSrxNiO4: A tentative phase diagram". Materials Research Bulletin. 25 (10): 1235–1242. doi:10.1016/0025-5408(90)90079-H. /wiki/Doi_(identifier)

  41. Fratello, V.J.; Berkstresser, G.W.; Brandle, C.D.; Ven Graitis, A.J. (September 1996). "Nickel containing perovskites". Journal of Crystal Growth. 166 (1–4): 878–882. Bibcode:1996JCrGr.166..878F. doi:10.1016/0022-0248(95)00474-2. /wiki/Bibcode_(identifier)

  42. Poltavets, Viktor V.; Lokshin, Konstantin A.; Dikmen, Sibel; Croft, Mark; Egami, Takeshi; Greenblatt, Martha (July 2006). "La2Ni2O6: A New Double T′-type Nickelate with Infinite Ni1+/2+O2 Layers". Journal of the American Chemical Society. 128 (28): 9050–9051. Bibcode:2006JAChS.128.9050P. doi:10.1021/ja063031o. PMID 16834375. /wiki/Bibcode_(identifier)

  43. Lafez, P.; Ruello, P.; Edely, M. (2008). "Electrical and Infrared Properties of RF Sputtering of Rare Earth Nickelate (RNiO3) Thin Films with Metal Insulator-Transitions". In Lamont, Paul W. (ed.). Leading-Edge Materials Science Research. Nova Publishers. pp. 277–310. ISBN 9781600217982. Retrieved 21 April 2016. 9781600217982

  44. Poltavets, Viktor V.; Lokshin, Konstantin A.; Dikmen, Sibel; Croft, Mark; Egami, Takeshi; Greenblatt, Martha (July 2006). "La2Ni2O6: A New Double T′-type Nickelate with Infinite Ni1+/2+O2 Layers". Journal of the American Chemical Society. 128 (28): 9050–9051. Bibcode:2006JAChS.128.9050P. doi:10.1021/ja063031o. PMID 16834375. /wiki/Bibcode_(identifier)

  45. Popova, M. N.; Romanov, E. A.; Klimin, S. A.; Chukalina, E. P.; Mill, B. V.; Dhalenne, G. (2005). "Stark Structure and Exchange Splittings of Nd3+ Ion Levels in Chain Nickelate Nd2BaNiO5". Physics of the Solid State. 47 (8): 1497–1503. Bibcode:2005PhSS...47.1497P. doi:10.1134/1.2014500. /wiki/Bibcode_(identifier)

  46. Wang, Ningning; Wang, Gang; Shen, Xiaoling; Hou, Jun; Luo, Jun; Ma, Xiaoping; Yang, Huaixin; Shi, Lifen; Dou, Jie; Feng, Jie; Yang, Jie; Shi, Yunqing; Ren, Zhian; Ma, Hanming; Yang, Pengtao; Liu, Ziyi; Liu, Yue; Zhang, Hua; Dong, Xiaoli; Wang, Yuxin; Jiang, Kun; Hu, Jiangping; Nagasaki, Shoko; Kitagawa, Kentaro; Calder, Stuart; Yan, Jiaqiang; Sun, Jianping; Wang, Bosen; Zhou, Rui; Uwatoko, Yoshiya; Cheng, Jinguang (17 October 2024). "Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7". Nature. 634 (8034): 579–584. doi:10.1038/s41586-024-07996-8. PMID 39358510. /wiki/Doi_(identifier)

  47. Wang, Ningning; Wang, Gang; Shen, Xiaoling; Hou, Jun; Luo, Jun; Ma, Xiaoping; Yang, Huaixin; Shi, Lifen; Dou, Jie; Feng, Jie; Yang, Jie; Shi, Yunqing; Ren, Zhian; Ma, Hanming; Yang, Pengtao; Liu, Ziyi; Liu, Yue; Zhang, Hua; Dong, Xiaoli; Wang, Yuxin; Jiang, Kun; Hu, Jiangping; Nagasaki, Shoko; Kitagawa, Kentaro; Calder, Stuart; Yan, Jiaqiang; Sun, Jianping; Wang, Bosen; Zhou, Rui; Uwatoko, Yoshiya; Cheng, Jinguang (17 October 2024). "Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7". Nature. 634 (8034): 579–584. doi:10.1038/s41586-024-07996-8. PMID 39358510. /wiki/Doi_(identifier)

  48. Yamamoto, Susumu; Fujiwara, Takeo (June 2002). "Symmetry consideration and eg bands in NdNiO3 and YNiO3". Journal of Physics and Chemistry of Solids. 63 (6–8): 1347–1351. arXiv:cond-mat/0110431. Bibcode:2002JPCS...63.1347Y. doi:10.1016/S0022-3697(02)00085-9. /wiki/ArXiv_(identifier)

  49. Lafez, P.; Ruello, P.; Edely, M. (2008). "Electrical and Infrared Properties of RF Sputtering of Rare Earth Nickelate (RNiO3) Thin Films with Metal Insulator-Transitions". In Lamont, Paul W. (ed.). Leading-Edge Materials Science Research. Nova Publishers. pp. 277–310. ISBN 9781600217982. Retrieved 21 April 2016. 9781600217982

  50. Poltavets, Viktor V.; Lokshin, Konstantin A.; Dikmen, Sibel; Croft, Mark; Egami, Takeshi; Greenblatt, Martha (July 2006). "La2Ni2O6: A New Double T′-type Nickelate with Infinite Ni1+/2+O2 Layers". Journal of the American Chemical Society. 128 (28): 9050–9051. Bibcode:2006JAChS.128.9050P. doi:10.1021/ja063031o. PMID 16834375. /wiki/Bibcode_(identifier)

  51. "details of selected material". Atom Work. Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=17009&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4295019082&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+Nd&need_more_type=prototype_number&material_id=4295348408&page=1&isConditionValueError=false

  52. García-Muñoz, J. L.; Aranda, M. A. G.; Alonso, J. A.; Martínez-Lope, M. J. (28 April 2009). "Structure and charge order in the antiferromagnetic band-insulating phase of NdNiO3". Physical Review B. 79 (13): 134432. Bibcode:2009PhRvB..79m4432G. doi:10.1103/PhysRevB.79.134432. /wiki/Bibcode_(identifier)

  53. Poltavets, Viktor V.; Lokshin, Konstantin A.; Dikmen, Sibel; Croft, Mark; Egami, Takeshi; Greenblatt, Martha (July 2006). "La2Ni2O6: A New Double T′-type Nickelate with Infinite Ni1+/2+O2 Layers". Journal of the American Chemical Society. 128 (28): 9050–9051. Bibcode:2006JAChS.128.9050P. doi:10.1021/ja063031o. PMID 16834375. /wiki/Bibcode_(identifier)

  54. "details of selected material". Atom Work. Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=39885&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4295028170&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+Nd&need_more_type=prototype_number&material_id=4296371193&page=1&isConditionValueError=false

  55. "details of selected material". Atom Work. Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=21953&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4295028189&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+Nd&need_more_type=prototype_number&material_id=4296371644&page=1&isConditionValueError=false

  56. Popova, M. N.; Romanov, E. A.; Klimin, S. A.; Chukalina, E. P.; Mill, B. V.; Dhalenne, G. (2005). "Stark Structure and Exchange Splittings of Nd3+ Ion Levels in Chain Nickelate Nd2BaNiO5". Physics of the Solid State. 47 (8): 1497–1503. Bibcode:2005PhSS...47.1497P. doi:10.1134/1.2014500. /wiki/Bibcode_(identifier)

  57. Alonso, J. A.; Rasines, I.; Rodriguez-Carvajal, J.; Torrance, J. B. (April 1994). "Hole and Electron Doping of R2BaNiO5 (R = Rare Earths)". Journal of Solid State Chemistry. 109 (2): 231–240. Bibcode:1994JSSCh.109..231A. doi:10.1006/jssc.1994.1098. /wiki/Bibcode_(identifier)

  58. Lafez, P.; Ruello, P.; Edely, M. (2008). "Electrical and Infrared Properties of RF Sputtering of Rare Earth Nickelate (RNiO3) Thin Films with Metal Insulator-Transitions". In Lamont, Paul W. (ed.). Leading-Edge Materials Science Research. Nova Publishers. pp. 277–310. ISBN 9781600217982. Retrieved 21 April 2016. 9781600217982

  59. "materials database 16998". Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=16998&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4294985215&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+Sm&need_more_type=prototype_number&material_id=4295274412&page=1&isConditionValueError=false

  60. Liu, Xiao Qiang; Wu, Yong Jun; Chen, Xiang Ming; Zhu, Hai Yan (2009). "Temperature-stable giant dielectric response in orthorhombic samarium strontium nickelate ceramics". Journal of Applied Physics. 105 (5): 054104–054104–4. Bibcode:2009JAP...105e4104L. doi:10.1063/1.3082034. /wiki/Bibcode_(identifier)

  61. Lafez, P.; Ruello, P.; Edely, M. (2008). "Electrical and Infrared Properties of RF Sputtering of Rare Earth Nickelate (RNiO3) Thin Films with Metal Insulator-Transitions". In Lamont, Paul W. (ed.). Leading-Edge Materials Science Research. Nova Publishers. pp. 277–310. ISBN 9781600217982. Retrieved 21 April 2016. 9781600217982

  62. Gibert, Marta; Catalano, Sara; Fowlie, Jennifer. "Researchkelates". dqmp.unige.ch. Retrieved 21 April 2016. http://dqmp.unige.ch/triscone/research.php?topic=nickelates

  63. "Materials database". Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=26095&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4294992021&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+Gd&need_more_type=prototype_number&material_id=4295347434&page=1&isConditionValueError=false

  64. Nasani, Narendar; Oliveira Rocha, Carlos Miguel; Kovalevsky, Andrei V.; Otero Irurueta, Gonzalo; Populoh, Sascha; Thiel, Philipp; Weidenkaff, Anke; Neto da Silva, Fernando; Fagg, Duncan P. (8 February 2017). "Exploring the Thermoelectric Performance of BaGd2NiO5 Haldane Gap Materials". Inorganic Chemistry. 56 (4): 2354–2362. doi:10.1021/acs.inorgchem.7b00049. PMID 28177255. /wiki/Doi_(identifier)

  65. Popova, M. N.; Romanov, E. A.; Klimin, S. A.; Chukalina, E. P.; Mill, B. V.; Dhalenne, G. (2005). "Stark Structure and Exchange Splittings of Nd3+ Ion Levels in Chain Nickelate Nd2BaNiO5". Physics of the Solid State. 47 (8): 1497–1503. Bibcode:2005PhSS...47.1497P. doi:10.1134/1.2014500. /wiki/Bibcode_(identifier)

  66. Lafez, P.; Ruello, P.; Edely, M. (2008). "Electrical and Infrared Properties of RF Sputtering of Rare Earth Nickelate (RNiO3) Thin Films with Metal Insulator-Transitions". In Lamont, Paul W. (ed.). Leading-Edge Materials Science Research. Nova Publishers. pp. 277–310. ISBN 9781600217982. Retrieved 21 April 2016. 9781600217982

  67. Gibert, Marta; Catalano, Sara; Fowlie, Jennifer. "Researchkelates". dqmp.unige.ch. Retrieved 21 April 2016. http://dqmp.unige.ch/triscone/research.php?topic=nickelates

  68. "materials database". Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=17005&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4294985215&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+Dy&need_more_type=prototype_number&material_id=4295274419&page=1&isConditionValueError=false

  69. Popova, M. N.; Romanov, E. A.; Klimin, S. A.; Chukalina, E. P.; Mill, B. V.; Dhalenne, G. (2005). "Stark Structure and Exchange Splittings of Nd3+ Ion Levels in Chain Nickelate Nd2BaNiO5". Physics of the Solid State. 47 (8): 1497–1503. Bibcode:2005PhSS...47.1497P. doi:10.1134/1.2014500. /wiki/Bibcode_(identifier)

  70. Gibert, Marta; Catalano, Sara; Fowlie, Jennifer. "Researchkelates". dqmp.unige.ch. Retrieved 21 April 2016. http://dqmp.unige.ch/triscone/research.php?topic=nickelates

  71. Popova, M. N.; Romanov, E. A.; Klimin, S. A.; Chukalina, E. P.; Mill, B. V.; Dhalenne, G. (2005). "Stark Structure and Exchange Splittings of Nd3+ Ion Levels in Chain Nickelate Nd2BaNiO5". Physics of the Solid State. 47 (8): 1497–1503. Bibcode:2005PhSS...47.1497P. doi:10.1134/1.2014500. /wiki/Bibcode_(identifier)

  72. García Matres, E.; Rodríguez Carvajal, J.; Martínez, J.L.; Salinas Sánchez, A.; Sáez Puche, R. (February 1993). "Magnetic structure of Ho2BaNiO5". Solid State Communications. 85 (7): 553–559. Bibcode:1993SSCom..85..553G. doi:10.1016/0038-1098(93)90306-8. /wiki/Bibcode_(identifier)

  73. Gibert, Marta; Catalano, Sara; Fowlie, Jennifer. "Researchkelates". dqmp.unige.ch. Retrieved 21 April 2016. http://dqmp.unige.ch/triscone/research.php?topic=nickelates

  74. "materials database". Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=17002&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4294985215&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+Er&need_more_type=prototype_number&material_id=4295274416&page=1&isConditionValueError=false

  75. Popova, M. N.; Romanov, E. A.; Klimin, S. A.; Chukalina, E. P.; Mill, B. V.; Dhalenne, G. (2005). "Stark Structure and Exchange Splittings of Nd3+ Ion Levels in Chain Nickelate Nd2BaNiO5". Physics of the Solid State. 47 (8): 1497–1503. Bibcode:2005PhSS...47.1497P. doi:10.1134/1.2014500. /wiki/Bibcode_(identifier)

  76. Alonso, J. A.; Rasines, I.; Rodriguez-Carvajal, J.; Torrance, J. B. (April 1994). "Hole and Electron Doping of R2BaNiO5 (R = Rare Earths)". Journal of Solid State Chemistry. 109 (2): 231–240. Bibcode:1994JSSCh.109..231A. doi:10.1006/jssc.1994.1098. /wiki/Bibcode_(identifier)

  77. Alonso, J. A.; Amador, J.; Rasines, I.; Soubeyroux, J. L. (15 February 1991). "Er2BaNiO5: structure refinement using neutron powder diffraction data". Acta Crystallographica Section C. 47 (2): 249–251. Bibcode:1991AcCrC..47..249A. doi:10.1107/S0108270190008873. /wiki/Bibcode_(identifier)

  78. "materials database". Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=17001&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4294985215&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+Tm&need_more_type=prototype_number&material_id=4295274415&page=1&isConditionValueError=false

  79. Popova, M. N.; Romanov, E. A.; Klimin, S. A.; Chukalina, E. P.; Mill, B. V.; Dhalenne, G. (2005). "Stark Structure and Exchange Splittings of Nd3+ Ion Levels in Chain Nickelate Nd2BaNiO5". Physics of the Solid State. 47 (8): 1497–1503. Bibcode:2005PhSS...47.1497P. doi:10.1134/1.2014500. /wiki/Bibcode_(identifier)

  80. Salinas Sánchez, A.; Sáez Puche, R.; Rodríguez Carvajal, J.; Martínez, J.L. (May 1991). "Structural characterization of R2BaNiO5 (R = Tm and Yb): polymorphism for R = Tm". Solid State Communications. 78 (6): 481–488. Bibcode:1991SSCom..78..481S. doi:10.1016/0038-1098(91)90361-X. /wiki/Bibcode_(identifier)

  81. "materials database". Retrieved 23 April 2016. http://crystdb.nims.go.jp/crystdb/search-details?substance_id=17000&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4294985215&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+Yb&need_more_type=prototype_number&material_id=4295274414&page=1&isConditionValueError=false

  82. Salinas Sánchez, A.; Sáez Puche, R.; Rodríguez Carvajal, J.; Martínez, J.L. (May 1991). "Structural characterization of R2BaNiO5 (R = Tm and Yb): polymorphism for R = Tm". Solid State Communications. 78 (6): 481–488. Bibcode:1991SSCom..78..481S. doi:10.1016/0038-1098(91)90361-X. /wiki/Bibcode_(identifier)

  83. Gibert, Marta; Catalano, Sara; Fowlie, Jennifer. "Researchkelates". dqmp.unige.ch. Retrieved 21 April 2016. http://dqmp.unige.ch/triscone/research.php?topic=nickelates

  84. "Materials database". http://crystdb.nims.go.jp/crystdb/search-details?substance_id=16999&tabDetail=pageS&need_more_value=&pageD=1&reference_id=4294985215&pageA=1&pageSubP=1&errorCode=0&pageSubD=1&pageSubA=1&isVisiblePeriodicTable=true&tab=pageA&tabSub=pageA&isNeedMoreValueError=false&search-type=search-materials&condition_type=chemical_system&history=true&pageS=1&pageP=0&pageSubS=1&condition_value=Ni+O+Lu&need_more_type=prototype_number&material_id=4295274413&page=1&isConditionValueError=false

  85. Alonso, J. A.; Rasines, I.; Rodriguez-Carvajal, J.; Torrance, J. B. (April 1994). "Hole and Electron Doping of R2BaNiO5 (R = Rare Earths)". Journal of Solid State Chemistry. 109 (2): 231–240. Bibcode:1994JSSCh.109..231A. doi:10.1006/jssc.1994.1098. /wiki/Bibcode_(identifier)

  86. Kim, Seung-Joo; Demazeau, Gérard; Alonso, José A.; Choy, Jin-Ho (2001). "High pressure synthesis and crystal structure of a new Ni(III) perovskite: TlNiO3". Journal of Materials Chemistry. 11 (2): 487–492. doi:10.1039/b007043m. /wiki/Doi_(identifier)

  87. Ishiwata, Shintaro; Azuma, Masaki; Takano, Mikio; Nishibori, Eiji; Takata, Masaki; Sakata, Makoto; Kato, Kenichi (29 November 2002). "High pressure synthesis, crystal structure and physical properties of a new Ni(II) perovskite BiNiO3". Journal of Materials Chemistry. 12 (12): 3733–3737. doi:10.1039/b206022a. /wiki/Doi_(identifier)

  88. Pugaczowa-Michalska, M.; Kaczkowski, J. (January 2017). "DFT+U studies of triclinic phase of BiNiO3 and La-substituted BiNiO3". Computational Materials Science. 126: 407–417. doi:10.1016/j.commatsci.2016.10.014. /wiki/Doi_(identifier)