Ordered rings are familiar from arithmetic. Examples include the integers, the rationals and the real numbers.2 (The rationals and reals in fact form ordered fields.) The complex numbers, in contrast, do not form an ordered ring or field, because there is no inherent order relationship between the elements 1 and i.
In analogy with the real numbers, we call an element c of an ordered ring R positive if 0 < c, and negative if c < 0. 0 is considered to be neither positive nor negative.
The set of positive elements of an ordered ring R is often denoted by R+. An alternative notation, favored in some disciplines, is to use R+ for the set of nonnegative elements, and R++ for the set of positive elements.
If a {\displaystyle a} is an element of an ordered ring R, then the absolute value of a {\displaystyle a} , denoted | a | {\displaystyle |a|} , is defined thus:
where − a {\displaystyle -a} is the additive inverse of a {\displaystyle a} and 0 is the additive identity element.
A discrete ordered ring or discretely ordered ring is an ordered ring in which there is no element between 0 and 1. The integers are a discrete ordered ring, but the rational numbers are not.
For all a, b and c in R:
The list below includes references to theorems formally verified by the IsarMathLib project.
Lam, T. Y. (1983), Orderings, valuations and quadratic forms, CBMS Regional Conference Series in Mathematics, vol. 52, American Mathematical Society, ISBN 0-8218-0702-1, Zbl 0516.12001 0-8218-0702-1 ↩
*Lam, T. Y. (2001), A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131 (2nd ed.), New York: Springer-Verlag, pp. xx+385, ISBN 0-387-95183-0, MR 1838439, Zbl 0980.16001 0-387-95183-0 ↩
OrdRing_ZF_1_L9 ↩
OrdRing_ZF_2_L5 ↩
ord_ring_infinite ↩
OrdRing_ZF_3_L2, see also OrdGroup_decomp ↩
OrdRing_ZF_1_L12 ↩