Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Ordered topological vector space

In mathematics, specifically in functional analysis and order theory, an ordered topological vector space, also called an ordered TVS, is a topological vector space (TVS) X that has a partial order ≤ making it into an ordered vector space whose positive cone C := { x ∈ X : x ≥ 0 } {\displaystyle C:=\left\{x\in X:x\geq 0\right\}} is a closed subset of X. Ordered TVSes have important applications in spectral theory.

We don't have any images related to Ordered topological vector space yet.
We don't have any YouTube videos related to Ordered topological vector space yet.
We don't have any PDF documents related to Ordered topological vector space yet.
We don't have any Books related to Ordered topological vector space yet.
We don't have any archived web articles related to Ordered topological vector space yet.

Normal cone

Main article: Normal cone (functional analysis)

If C is a cone in a TVS X then C is normal if U = [ U ] C {\displaystyle {\mathcal {U}}=\left[{\mathcal {U}}\right]_{C}} , where U {\displaystyle {\mathcal {U}}} is the neighborhood filter at the origin, [ U ] C = { [ U ] : U ∈ U } {\displaystyle \left[{\mathcal {U}}\right]_{C}=\left\{\left[U\right]:U\in {\mathcal {U}}\right\}} , and [ U ] C := ( U + C ) ∩ ( U − C ) {\displaystyle [U]_{C}:=\left(U+C\right)\cap \left(U-C\right)} is the C-saturated hull of a subset U of X.2

If C is a cone in a TVS X (over the real or complex numbers), then the following are equivalent:3

  1. C is a normal cone.
  2. For every filter F {\displaystyle {\mathcal {F}}} in X, if lim F = 0 {\displaystyle \lim {\mathcal {F}}=0} then lim [ F ] C = 0 {\displaystyle \lim \left[{\mathcal {F}}\right]_{C}=0} .
  3. There exists a neighborhood base B {\displaystyle {\mathcal {B}}} in X such that B ∈ B {\displaystyle B\in {\mathcal {B}}} implies [ B ∩ C ] C ⊆ B {\displaystyle \left[B\cap C\right]_{C}\subseteq B} .

and if X is a vector space over the reals then also:4

  1. There exists a neighborhood base at the origin consisting of convex, balanced, C-saturated sets.
  2. There exists a generating family P {\displaystyle {\mathcal {P}}} of semi-norms on X such that p ( x ) ≤ p ( x + y ) {\displaystyle p(x)\leq p(x+y)} for all x , y ∈ C {\displaystyle x,y\in C} and p ∈ P {\displaystyle p\in {\mathcal {P}}} .

If the topology on X is locally convex then the closure of a normal cone is a normal cone.5

Properties

If C is a normal cone in X and B is a bounded subset of X then [ B ] C {\displaystyle \left[B\right]_{C}} is bounded; in particular, every interval [ a , b ] {\displaystyle [a,b]} is bounded.6 If X is Hausdorff then every normal cone in X is a proper cone.7

Properties

  • Let X be an ordered vector space over the reals that is finite-dimensional. Then the order of X is Archimedean if and only if the positive cone of X is closed for the unique topology under which X is a Hausdorff TVS.8
  • Let X be an ordered vector space over the reals with positive cone C. Then the following are equivalent:9
  1. the order of X is regular.
  2. C is sequentially closed for some Hausdorff locally convex TVS topology on X and X + {\displaystyle X^{+}} distinguishes points in X
  3. the order of X is Archimedean and C is normal for some Hausdorff locally convex TVS topology on X.

See also

  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.

References

  1. Schaefer & Wolff 1999, pp. 222–225. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  2. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  3. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  4. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  5. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  6. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  7. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  8. Schaefer & Wolff 1999, pp. 222–225. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  9. Schaefer & Wolff 1999, pp. 222–225. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135