Main article: Normal cone (functional analysis)
If C is a cone in a TVS X then C is normal if U = [ U ] C {\displaystyle {\mathcal {U}}=\left[{\mathcal {U}}\right]_{C}} , where U {\displaystyle {\mathcal {U}}} is the neighborhood filter at the origin, [ U ] C = { [ U ] : U ∈ U } {\displaystyle \left[{\mathcal {U}}\right]_{C}=\left\{\left[U\right]:U\in {\mathcal {U}}\right\}} , and [ U ] C := ( U + C ) ∩ ( U − C ) {\displaystyle [U]_{C}:=\left(U+C\right)\cap \left(U-C\right)} is the C-saturated hull of a subset U of X.2
If C is a cone in a TVS X (over the real or complex numbers), then the following are equivalent:3
and if X is a vector space over the reals then also:4
If the topology on X is locally convex then the closure of a normal cone is a normal cone.5
If C is a normal cone in X and B is a bounded subset of X then [ B ] C {\displaystyle \left[B\right]_{C}} is bounded; in particular, every interval [ a , b ] {\displaystyle [a,b]} is bounded.6 If X is Hausdorff then every normal cone in X is a proper cone.7
Schaefer & Wolff 1999, pp. 222–225. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135 ↩
Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135 ↩