Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Topological vector lattice

In mathematics, specifically in functional analysis and order theory, a topological vector lattice is a Hausdorff topological vector space (TVS) X {\displaystyle X} that has a partial order ≤ {\displaystyle \,\leq \,} making it into vector lattice that possesses a neighborhood base at the origin consisting of solid sets. Ordered vector lattices have important applications in spectral theory.

We don't have any images related to Topological vector lattice yet.
We don't have any YouTube videos related to Topological vector lattice yet.
We don't have any PDF documents related to Topological vector lattice yet.
We don't have any Books related to Topological vector lattice yet.
We don't have any archived web articles related to Topological vector lattice yet.

Definition

If X {\displaystyle X} is a vector lattice then by the vector lattice operations we mean the following maps:

  1. the three maps X {\displaystyle X} to itself defined by x ↦ | x | {\displaystyle x\mapsto |x|} , x ↦ x + {\displaystyle x\mapsto x^{+}} , x ↦ x − {\displaystyle x\mapsto x^{-}} , and
  2. the two maps from X × X {\displaystyle X\times X} into X {\displaystyle X} defined by ( x , y ) ↦ sup { x , y } {\displaystyle (x,y)\mapsto \sup _{}\{x,y\}} and ( x , y ) ↦ inf { x , y } {\displaystyle (x,y)\mapsto \inf _{}\{x,y\}} .

If X {\displaystyle X} is a TVS over the reals and a vector lattice, then X {\displaystyle X} is locally solid if and only if (1) its positive cone is a normal cone, and (2) the vector lattice operations are continuous.2

If X {\displaystyle X} is a vector lattice and an ordered topological vector space that is a Fréchet space in which the positive cone is a normal cone, then the lattice operations are continuous.3

If X {\displaystyle X} is a topological vector space (TVS) and an ordered vector space then X {\displaystyle X} is called locally solid if X {\displaystyle X} possesses a neighborhood base at the origin consisting of solid sets.4 A topological vector lattice is a Hausdorff TVS X {\displaystyle X} that has a partial order ≤ {\displaystyle \,\leq \,} making it into vector lattice that is locally solid.5

Properties

Every topological vector lattice has a closed positive cone and is thus an ordered topological vector space.6 Let B {\displaystyle {\mathcal {B}}} denote the set of all bounded subsets of a topological vector lattice with positive cone C {\displaystyle C} and for any subset S {\displaystyle S} , let [ S ] C := ( S + C ) ∩ ( S − C ) {\displaystyle [S]_{C}:=(S+C)\cap (S-C)} be the C {\displaystyle C} -saturated hull of S {\displaystyle S} . Then the topological vector lattice's positive cone C {\displaystyle C} is a strict B {\displaystyle {\mathcal {B}}} -cone,7 where C {\displaystyle C} is a strict B {\displaystyle {\mathcal {B}}} -cone means that { [ B ] C : B ∈ B } {\displaystyle \left\{[B]_{C}:B\in {\mathcal {B}}\right\}} is a fundamental subfamily of B {\displaystyle {\mathcal {B}}} that is, every B ∈ B {\displaystyle B\in {\mathcal {B}}} is contained as a subset of some element of { [ B ] C : B ∈ B } {\displaystyle \left\{[B]_{C}:B\in {\mathcal {B}}\right\}} ).8

If a topological vector lattice X {\displaystyle X} is order complete then every band is closed in X {\displaystyle X} .9

Examples

The Lp spaces ( 1 ≤ p ≤ ∞ {\displaystyle 1\leq p\leq \infty } ) are Banach lattices under their canonical orderings. These spaces are order complete for p < ∞ {\displaystyle p<\infty } .

See also

Bibliography

  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.

References

  1. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  2. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  3. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  4. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  5. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  6. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  7. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  8. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  9. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135