Some textbooks and research articles show the incorrect geometric isomer of bilirubin. The naturally occurring isomer is the Z,Z-isomer.
Bilirubin is then released into the plasma and transported to the liver bound by albumin, since it is insoluble in water in this state. In this state, bilirubin is called unconjugated (despite being bound by albumin).
In the liver, unconjugated bilirubin is up-taken by the hepatocytes and subsequently conjugated with glucuronic acid (via the enzyme uridine diphosphate–glucuronyl transferase). In this state, bilirubin is soluble in water and it is called conjugated bilirubin.
Conjugated bilirubin is excreted into the bile ducts and enters the duodenum. During its transport to the colon, it is converted into urobilinogen by the bacterial enzyme bilirubin reductase. Most of the urobilinogen is further reduced into stercobilinogen and is excreted through feces (air oxidizes stercobilinogen to stercobilin, which gives feces their characteristic brown color).
A lesser amount of urobilinogen is re-absorbed into portal circulation and transferred to the liver. For the most part, this urobilinogen is recycled to conjugated bilirubin and this process closes the enterohepatic circle. There is also an amount of urobilinogen which is not recycled, but rather enters the systemic circulation and subsequently the kidneys, where it is excreted. Air oxidizes urobilinogen into urobilin, which gives urine its characteristic color.
In parallel, a small amount of conjugated billirubin can also enter the systemic circulation and get excreted through urine. This is exaggerated in various pathological situations.
Prehepatic causes are associated mostly with an increase of unconjugated (indirect) bilirubin. They include:
Intrahepatic causes can be associated with elevated levels of conjugated bilirubin, unconjugated bilirubin or both. They include:
Post-hepatic causes are associated with elevated levels of conjugated bilirubin. These include:
Cirrhosis may cause normal, moderately high or high levels of bilirubin, depending on exact features of the cirrhosis.
Hemoglobin acts to transport oxygen which the body receives to all body tissue via blood vessels. Over time, when red blood cells need to be replenished, the hemoglobin is broken down in the spleen; it breaks down into two parts: heme group consisting of iron and bile, and protein fraction. While protein and iron are utilized to renew red blood cells, pigments that make up the red color in blood are deposited into the bile to form bilirubin. Jaundice leads to raised bilirubin levels> that in turn negatively remove elastin-rich tissues. Jaundice may be noticeable in the sclera of the eyes at levels of about 2 to 3 mg/dl (34 to 51 μmol/L), and in the skin at higher levels.
Jaundice is classified, depending upon whether the bilirubin is free or conjugated to glucuronic acid, into conjugated jaundice or unconjugated jaundice.
Unbound bilirubin (Bf) levels can be used to predict the risk of neurodevelopmental handicaps within infants. Unconjugated hyperbilirubinemia in a newborn can lead to accumulation of bilirubin in certain brain regions (particularly the basal nuclei) with consequent irreversible damage to these areas manifesting as various neurological deficits, seizures, abnormal reflexes and eye movements. This type of neurological injury is known as kernicterus. The spectrum of clinical effect is called bilirubin encephalopathy. The neurotoxicity of neonatal hyperbilirubinemia manifests because the blood–brain barrier has yet to develop fully,[dubious – discuss] and bilirubin can freely pass into the brain interstitium, whereas more developed individuals with increased bilirubin in the blood are protected. Aside from specific chronic medical conditions that may lead to hyperbilirubinemia, neonates in general are at increased risk since they lack the intestinal bacteria that facilitate the breakdown and excretion of conjugated bilirubin in the feces (this is largely why the feces of a neonate are paler than those of an adult). Instead the conjugated bilirubin is converted back into the unconjugated form by the enzyme β-glucuronidase (in the gut, this enzyme is located in the brush border of the lining intestinal cells) and a large proportion is reabsorbed through the enterohepatic circulation. In addition, recent studies point towards high total bilirubin levels as a cause for gallstones regardless of gender or age.
In the absence of liver disease, high levels of total bilirubin confers various health benefits. Studies have also revealed that levels of serum bilirubin (SBR) are inversely related to risk of certain heart diseases. While the poor solubility and potential toxicity of bilirubin limit its potential medicinal applications, current research is being done on whether bilirubin encapsulated silk fibrin nanoparticles can alleviate symptoms of disorders such as acute pancreatitis. In addition to this, there have been recent discoveries linking bilirubin and its ε-polylysine-bilirubin conjugate (PLL-BR), to more efficient insulin medication. It seems that bilirubin exhibits protective properties during the islet transplantation process when drugs are delivered throughout the bloodstream.
Bilirubin is degraded by light. Blood collection tubes containing blood or (especially) serum to be used in bilirubin assays should be protected from illumination. For adults, blood is typically collected by needle from a vein in the arm. In newborns, blood is often collected from a heel stick, a technique that uses a small, sharp blade to cut the skin on the infant's heel and collect a few drops of blood into a small tube. Non-invasive technology is available in some health care facilities that will measure bilirubin by using a bilirubinometer which shines light onto the skin and calculates the amount of bilirubin by analysing how the light is absorbed or reflected. This device is also known as a transcutaneous bilirubin meter.
Note: Conjugated bilirubin is often incorrectly called "direct bilirubin" and unconjugated bilirubin is incorrectly called "indirect bilirubin". Direct and indirect refer solely to how compounds are measured or detected in solution. Direct bilirubin is any form of bilirubin which is water-soluble and is available in solution to react with assay reagents; direct bilirubin is often made up largely of conjugated bilirubin, but some unconjugated bilirubin (up to 25%) can still be part of the "direct" bilirubin fraction. Likewise, not all conjugated bilirubin is readily available in solution for reaction or detection (for example, if it is hydrogen bonding with itself) and therefore would not be included in the direct bilirubin fraction.
Total bilirubin (TBIL) measures both BU and BC. Total bilirubin assays work by using surfactants and accelerators (like caffeine) to bring all of the different bilirubin forms into solution where they can react with assay reagents. Total and direct bilirubin levels can be measured from the blood, but indirect bilirubin is calculated from the total and direct bilirubin.
Indirect bilirubin is fat-soluble and direct bilirubin is water-soluble.
The measurement of unconjugated bilirubin (UCB) is underestimated by measurement of indirect bilirubin, as unconjugated bilirubin (without/yet glucuronidation) reacts with diazosulfanilic acid to create azobilirubin which is measured as direct bilirubin.
Conjugated bilirubin's half-life is shorter than delta bilirubin.
Although the terms direct and indirect bilirubin are sometimes used interchangeably with conjugated and unconjugated bilirubin, the direct fraction actually includes both conjugated bilirubin and delta bilirubin.
Delta bilirubin is albumin-bound conjugated bilirubin. In the other words, delta bilirubin is the kind of bilirubin covalently bound to albumin, which appears in the serum when hepatic excretion of conjugated bilirubin is impaired in patients with hepatobiliary disease. Furthermore, direct bilirubin tends to overestimate conjugated bilirubin levels due to unconjugated bilirubin that has reacted with diazosulfanilic acid, leading to increased azobilirubin levels (and increased direct bilirubin).
A free-of-bound bilirubin has a half-life of 2 to 4 hours.
Total bilirubin is now often measured by the 2,5-dichlorophenyldiazonium (DPD) method, and direct bilirubin is often measured by the method of Jendrassik and Grof.
The bilirubin level found in the body reflects the balance between production and excretion. Blood test results are advised to always be interpreted using the reference range provided by the laboratory that performed the test. The SI units are μmol/L. Typical ranges for adults are:
Urine bilirubin may also be clinically significant. Bilirubin is not normally detectable in the urine of healthy people. If the blood level of conjugated bilirubin becomes elevated, e.g. due to liver disease, excess conjugated bilirubin is excreted in the urine, indicating a pathological process. Unconjugated bilirubin is not water-soluble and so is not excreted in the urine. Testing urine for both bilirubin and urobilinogen can help differentiate obstructive liver disease from other causes of jaundice.
As with billirubin, under normal circumstances, only a very small amount of urobilinogen is excreted in the urine. If the liver's function is impaired or when biliary drainage is blocked, some of the conjugated bilirubin leaks out of the hepatocytes and appears in the urine, turning it dark amber. However, in disorders involving hemolytic anemia, an increased number of red blood cells are broken down, causing an increase in the amount of unconjugated bilirubin in the blood. Because the unconjugated bilirubin is not water-soluble, one will not see an increase in bilirubin in the urine. Because there is no problem with the liver or bile systems, this excess unconjugated bilirubin will go through all of the normal processing mechanisms that occur (e.g., conjugation, excretion in bile, metabolism to urobilinogen, reabsorption) and will show up as an increase of urobilinogen in the urine. This difference between increased urine bilirubin and increased urine urobilinogen helps to distinguish between various disorders in those systems.
In the 1930s, significant advances in bilirubin isolation and synthesis were described by Hans Fischer, Plieninger, and others, and pioneering work pertaining to endogenous formation of bilirubin from heme was likewise conducted in the same decade. The suffix IXα is partially based on a system developed Fischer, which means the bilin's parent compound was protoporphyrin IX cleaved at the alpha-methine bridge (see protoporphyrin IX nomenclature).
Origins pertaining to the physiological activity of bilirubin were described by Ernst Stadelmann in 1891, who may have observed the biotransformation of infused hemoglobin into bilirubin possibly inspired by Ivan Tarkhanov's 1874 works. Georg Barkan suggested the source of endogenous bilirubin to be from hemoglobin in 1932. Plieninger and Fischer demonstrated an enzymatic oxidative loss of the alpha-methine bridge of heme resulting in a bis-lactam structure in 1942. It is widely accepted that Irving London was the first to demonstrate endogenous formation of bilirubin from hemoglobin in 1950, and Sjostrand demonstrated hemoglobin catabolism produces carbon monoxide between 1949 and 1952. 14C labeled protoporphyrin biotransformation to bilirubin evidence emerged in 1966 by Cecil Watson. Rudi Schmid and Tenhunen discovered heme oxygenase, the enzyme responsible, in 1968. Earlier in 1963, Nakajima described a soluble "heme alpha-methnyl oxygeanse" which what later determined to be a non-enzymatic pathway, such as formation of a 1,2-Dioxetane intermediate at the methine bridge resulting in carbon monoxide release and biliverdin formation.
Chew, Dennis J.; DiBartola, Stephen P.; Schenck, Patricia A. (1 January 2011), Chew, Dennis J.; DiBartola, Stephen P.; Schenck, Patricia A. (eds.), "Chapter 1 - Urinalysis", Canine and Feline Nephrology and Urology (Second Edition), Saint Louis: W.B. Saunders, pp. 1–31, ISBN 978-0-7216-8178-8, retrieved 1 November 2023 978-0-7216-8178-8
Pirone C, Quirke JM, Priestap HA, Lee DW (March 2009). "Animal pigment bilirubin discovered in plants". Journal of the American Chemical Society. 131 (8): 2830. doi:10.1021/ja809065g. PMC 2880647. PMID 19206232. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880647
Blumgart, Leslie H.; Belghiti, Jacques; Jarnagin, William R.; DeMatteo, Ronald P., eds. (1 January 2007), "Chapter 7 - Biliary Tract Pathophysiology", Surgery of the Liver, Biliary Tract and Pancreas (Fourth Edition), Philadelphia: W.B. Saunders, pp. 79–97, doi:10.1016/B978-1-4160-3256-4.50015-6, ISBN 978-1-4160-3256-4, retrieved 31 October 2023 978-1-4160-3256-4
"Showing metabocard for Bilirubin (HMDB0000054)". hmdb.ca. The Human Metabolome Database (HMDB). 12 July 2022. Retrieved 22 August 2024. https://hmdb.ca/metabolites/HMDB0000054
McDonagh AF, Palma LA, Lightner DA (April 1980). "Blue light and bilirubin excretion". Science. 208 (4440): 145–51. Bibcode:1980Sci...208..145M. doi:10.1126/science.7361112. PMID 7361112. /wiki/Bibcode_(identifier)
"Bilirubin's Chemical Formula". Archived from the original on 4 May 2011. Retrieved 14 August 2007. https://web.archive.org/web/20110504235852/http://nsta.org/main/news/stories/college_science.php?news_story_ID=48991
Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (February 1987). "Bilirubin is an antioxidant of possible physiological importance". Science. 235 (4792): 1043–6. Bibcode:1987Sci...235.1043S. doi:10.1126/science.3029864. PMID 3029864. /wiki/Bibcode_(identifier)
Baranano DE, Rao M, Ferris CD, Snyder SH (December 2002). "Biliverdin reductase: a major physiologic cytoprotectant". Proceedings of the National Academy of Sciences of the United States of America. 99 (25): 16093–8. Bibcode:2002PNAS...9916093B. doi:10.1073/pnas.252626999. JSTOR 3073913. PMC 138570. PMID 12456881. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC138570
Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH (March 2009). "Bilirubin and glutathione have complementary antioxidant and cytoprotective roles". Proceedings of the National Academy of Sciences of the United States of America. 106 (13): 5171–6. Bibcode:2009PNAS..106.5171S. doi:10.1073/pnas.0813132106. JSTOR 40455167. PMC 2664041. PMID 19286972. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664041
Chen W, Maghzal GJ, Ayer A, Suarna C, Dunn LL, Stocker R (February 2018). "Absence of the biliverdin reductase-a gene is associated with increased endogenous oxidative stress". Free Radical Biology & Medicine. 115: 156–165. doi:10.1016/j.freeradbiomed.2017.11.020. PMID 29195835. S2CID 25089098. /wiki/Doi_(identifier)
Vasavda C, Kothari R, Malla AP, Tokhunts R, Lin A, Ji M, et al. (October 2019). "Bilirubin Links Heme Metabolism to Neuroprotection by Scavenging Superoxide". Cell Chemical Biology. 26 (10): 1450–1460.e7. doi:10.1016/j.chembiol.2019.07.006. PMC 6893848. PMID 31353321. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893848
Blumgart, Leslie H.; Belghiti, Jacques; Jarnagin, William R.; DeMatteo, Ronald P., eds. (1 January 2007), "Chapter 7 - Biliary Tract Pathophysiology", Surgery of the Liver, Biliary Tract and Pancreas (Fourth Edition), Philadelphia: W.B. Saunders, pp. 79–97, doi:10.1016/B978-1-4160-3256-4.50015-6, ISBN 978-1-4160-3256-4, retrieved 31 October 2023 978-1-4160-3256-4
Blumgart, Leslie H.; Belghiti, Jacques; Jarnagin, William R.; DeMatteo, Ronald P., eds. (1 January 2007), "Chapter 7 - Biliary Tract Pathophysiology", Surgery of the Liver, Biliary Tract and Pancreas (Fourth Edition), Philadelphia: W.B. Saunders, pp. 79–97, doi:10.1016/B978-1-4160-3256-4.50015-6, ISBN 978-1-4160-3256-4, retrieved 31 October 2023 978-1-4160-3256-4
Blumgart, Leslie H.; Belghiti, Jacques; Jarnagin, William R.; DeMatteo, Ronald P., eds. (1 January 2007), "Chapter 7 - Biliary Tract Pathophysiology", Surgery of the Liver, Biliary Tract and Pancreas (Fourth Edition), Philadelphia: W.B. Saunders, pp. 79–97, doi:10.1016/B978-1-4160-3256-4.50015-6, ISBN 978-1-4160-3256-4, retrieved 31 October 2023 978-1-4160-3256-4
Hall, Brantley; Levy, Sophia; Dufault-Thompson, Keith; Arp, Gabriela; Zhong, Aoshu; Ndjite, Glory Minabou; Weiss, Ashley; Braccia, Domenick; Jenkins, Conor; Grant, Maggie R.; Abeysinghe, Stephenie; Yang, Yiyan; Jermain, Madison D.; Wu, Chih Hao; Ma, Bing (3 January 2024). "BilR is a gut microbial enzyme that reduces bilirubin to urobilinogen". Nature Microbiology. 9 (1): 173–184. doi:10.1038/s41564-023-01549-x. ISSN 2058-5276. PMC 10769871. PMID 38172624. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769871
Blumgart, Leslie H.; Belghiti, Jacques; Jarnagin, William R.; DeMatteo, Ronald P., eds. (1 January 2007), "Chapter 7 - Biliary Tract Pathophysiology", Surgery of the Liver, Biliary Tract and Pancreas (Fourth Edition), Philadelphia: W.B. Saunders, pp. 79–97, doi:10.1016/B978-1-4160-3256-4.50015-6, ISBN 978-1-4160-3256-4, retrieved 31 October 2023 978-1-4160-3256-4
Blumgart, Leslie H.; Belghiti, Jacques; Jarnagin, William R.; DeMatteo, Ronald P., eds. (1 January 2007), "Chapter 7 - Biliary Tract Pathophysiology", Surgery of the Liver, Biliary Tract and Pancreas (Fourth Edition), Philadelphia: W.B. Saunders, pp. 79–97, doi:10.1016/B978-1-4160-3256-4.50015-6, ISBN 978-1-4160-3256-4, retrieved 31 October 2023 978-1-4160-3256-4
Greenberg, Arthur (1 January 2018), Gilbert, Scott J.; Weiner, Daniel E. (eds.), "4 - Urinalysis and Urine Microscopy", National Kidney Foundation' s Primer on Kidney Diseases (Seventh Edition), Philadelphia: Elsevier, pp. 33–41, ISBN 978-0-323-47794-9, retrieved 31 October 2023 978-0-323-47794-9
Greenberg, Arthur (1 January 2018), Gilbert, Scott J.; Weiner, Daniel E. (eds.), "4 - Urinalysis and Urine Microscopy", National Kidney Foundation' s Primer on Kidney Diseases (Seventh Edition), Philadelphia: Elsevier, pp. 33–41, ISBN 978-0-323-47794-9, retrieved 31 October 2023 978-0-323-47794-9
Roche, Sean P.; Kobos, Rebecca (15 January 2004). "Jaundice in the Adult Patient". American Family Physician. 69 (2): 299–304. PMID 14765767. https://www.aafp.org/pubs/afp/issues/2004/0115/p299.html
Roche, Sean P.; Kobos, Rebecca (15 January 2004). "Jaundice in the Adult Patient". American Family Physician. 69 (2): 299–304. PMID 14765767. https://www.aafp.org/pubs/afp/issues/2004/0115/p299.html
Roche, Sean P.; Kobos, Rebecca (15 January 2004). "Jaundice in the Adult Patient". American Family Physician. 69 (2): 299–304. PMID 14765767. https://www.aafp.org/pubs/afp/issues/2004/0115/p299.html
Roche, Sean P.; Kobos, Rebecca (15 January 2004). "Jaundice in the Adult Patient". American Family Physician. 69 (2): 299–304. PMID 14765767. https://www.aafp.org/pubs/afp/issues/2004/0115/p299.html
"Sulfonamides: Bacteria and Antibacterial Drugs: Merck Manual Professional". Archived from the original on 4 September 2012. https://archive.today/20120904003305/http://www.merck.com/mmpe/sec14/ch170/ch170n.html?qt=kernicterus&alt=sh%23sec14-ch170-ch170n-404f
Ramakrishnan, N.; Bittar, K.; Jialal, I. (8 March 2019). "Impaired Bilirubin Conjugation". NCBI Bookshelf. PMID 29494090. Retrieved 3 May 2019. https://www.ncbi.nlm.nih.gov/books/NBK482483/
Roche, Sean P.; Kobos, Rebecca (15 January 2004). "Jaundice in the Adult Patient". American Family Physician. 69 (2): 299–304. PMID 14765767. https://www.aafp.org/pubs/afp/issues/2004/0115/p299.html
Roche, Sean P.; Kobos, Rebecca (15 January 2004). "Jaundice in the Adult Patient". American Family Physician. 69 (2): 299–304. PMID 14765767. https://www.aafp.org/pubs/afp/issues/2004/0115/p299.html
Point WW (April 1958). "Jaundice". The American Journal of Nursing. 58 (4): 556–7. PMID 13508735. /wiki/PMID_(identifier)
Blood testing Bilirubin level Last full review/revision July 2023 by KDL https://kdl.ru/analizy-i-tseny/bilirubin-obshiy
Greenberg DA (December 2002). "The jaundice of the cell". Proceedings of the National Academy of Sciences of the United States of America. 99 (25): 15837–9. Bibcode:2002PNAS...9915837G. doi:10.1073/pnas.012685199. PMC 138521. PMID 12461187. S2CID 30298986. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC138521
Merck Manual Jaundice Last full review/revision July 2009 by Steven K. Herrine http://www.merck.com/mmpe/sec03/ch022/ch022d.html
For conversion, 1 mg/dl = 17.1 μmol/L.
Hegyi, T.; Chefitz, D.; Weller, A.; Huber, A; Carayannopoulos, M.; Kleinfeld, A. (2020). "Unbound bilirubin measurements in term and late-preterm infants". Journal of Maternal-Fetal & Neonatal Medicine. 35 (8): 1532–1538. doi:10.1080/14767058.2020.1761318. PMC 7609464. PMID 32366186. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609464
Zeng, D.; Wu, H.; Huang, Q.; Zeng, A.; Yu, Z.; Zhong, Z. (2021). "High levels of serum triglyceride, low-density lipoprotein cholesterol, total bile acid, and total bilirubin are risk factors for gallstones". Clinical Laboratory. 67 (8): 1905–1913. doi:10.7754/Clin.Lab.2021.201228. PMID 34383399. S2CID 234775572. Retrieved 11 November 2021 – via PubMed. https://pubmed.ncbi.nlm.nih.gov/34383399/
Sedlak TW, Snyder SH (June 2004). "Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle". Pediatrics. 113 (6): 1776–82. doi:10.1542/peds.113.6.1776. PMID 15173506. /wiki/Pediatrics_(journal)
"Neonatal Jaundice". Slhd.nsw.gov.au. 24 August 2009. Archived from the original on 27 January 2023. Retrieved 16 March 2022. https://web.archive.org/web/20230127135902/https://www.slhd.nsw.gov.au/rpa/neonatal/html/newprot/jaund2.html
Novotný L, Vítek L (May 2003). "Inverse relationship between serum bilirubin and atherosclerosis in men: a meta-analysis of published studies". Experimental Biology and Medicine. 228 (5): 568–71. doi:10.1177/15353702-0322805-29. PMID 12709588. S2CID 43486067. /wiki/Experimental_Biology_and_Medicine_(Society_for_Experimental_Biology_and_Medicine_journal)
Schwertner HA, Vítek L (May 2008). "Gilbert syndrome, UGT1A1*28 allele, and cardiovascular disease risk: possible protective effects and therapeutic applications of bilirubin". Atherosclerosis. 198 (1): 1–11. doi:10.1016/j.atherosclerosis.2008.01.001. PMID 18343383. https://zenodo.org/record/1258770
Yao, Q.; Jiang, X.; Zhai, Yuan-Yuan; Luo, Lan-Zi; Xu, He-Lin; Xiao, J.; Kou, L.; zhao, Ying-Zheng (2020). "Protective effects and mechanisms of bilirubin nanomedicine against acute pancreatitis". Journal of Controlled Release. 332: 312–325. doi:10.1016/j.jconrel.2020.03.034. PMID 32243974. S2CID 214786812. Retrieved 11 November 2021 – via Elsevier Science Direct. https://www.sciencedirect.com/science/article/abs/pii/S0168365920301863
Zhao, Ying-Zheng; Huang, Zhi-Wei; Zhai, Yuan-Yuan; Shi, Yannan; Du, Chu-Chu; Zhai, Jiaoyuan; Xu, He-Lin; Xiao, Jian; Kou, Longfa; Yao, Qing (2021). "Polylysine-bilirubin conjugates maintain functional islets and promote M2 macrophage polarization". Acta Biomaterialia. 122: 172–185. doi:10.1016/j.actbio.2020.12.047. PMID 33387663. S2CID 230281925. Retrieved 11 November 2021 – via Elsevier Science Direct. https://www.sciencedirect.com/science/article/abs/pii/S1742706120307704#!
Rehak, Nadja N.; Cecco, Stacey A.; Hortin, Glen L. (January 2008). "Photolysis of bilirubin in serum specimens exposed to room lighting". Clinica Chimica Acta. 387 (1–2): 181–183. doi:10.1016/j.cca.2007.09.019. PMC 2131702. PMID 17967443. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2131702
"Bilirubin test: What you can expect". Mayo Clinic. 8 October 2022. Retrieved 24 March 2024. https://www.mayoclinic.org/tests-procedures/bilirubin/about/pac-20393041
"Newborn jaundice: Bilirubin test". National Health Service UK. 15 September 2017. Retrieved 24 March 2024. https://www.nhs.uk/conditions/jaundice-newborn/diagnosis/#:~:text=Bilirubin%20test&text=a%20blood%20test%20of%20a,the%20serum%20is%20then%20measured)
Lucanova, Lucia Casnocha; Zibolenova, Jana; Matasova, Katarina; Docekalova, Lenka; Zibolen, Mirko (1 January 2021). "Accuracy of enhanced transcutaneous bilirubinometry according to various measurement sites". Turkish Archives of Pediatrics. 56 (1): 15–21. doi:10.14744/TurkPediatriArs.2020.54514. PMC 8114612. PMID 34013224. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114612
"Bilirubin: The Test | Bilirubin Test: Total bilirubin; TBIL; Neonatal bilirubin; Direct bilirubin; Conjugated bilirubin; Indirect bilirubin; Unconjugated bilirubin | Lab Tests Online". labtestsonline.org. Retrieved 14 June 2017. https://labtestsonline.org/understanding/analytes/bilirubin/tab/test/
Tietze KJ (2012). "Review of Laboratory and Diagnostic Tests". Clinical Skills for Pharmacists. Elsevier. pp. 86–122. doi:10.1016/b978-0-323-07738-5.10005-5. ISBN 978-0-323-07738-5. 978-0-323-07738-5
Gwaltney-Brant SM (2016). "Nutraceuticals in Hepatic Diseases". Nutraceuticals. Elsevier. pp. 87–99. doi:10.1016/b978-0-12-802147-7.00007-3. ISBN 978-0-12-802147-7. S2CID 78381597. 978-0-12-802147-7
"Unconjugated Hyperbilirubinemia: Practice Essentials, Background, Pathophysiology". Medscape Reference. 4 March 2019. Retrieved 6 May 2019. https://emedicine.medscape.com/article/178841-overview#a2
"Bilirubin: Reference Range, Interpretation, Collection and Panels". Medscape Reference. 1 February 2019. Retrieved 6 May 2019. https://emedicine.medscape.com/article/2074068-overview
Tietze KJ (2012). "Review of Laboratory and Diagnostic Tests". Clinical Skills for Pharmacists. Elsevier. pp. 86–122. doi:10.1016/b978-0-323-07738-5.10005-5. ISBN 978-0-323-07738-5. 978-0-323-07738-5
Cheifetz AS (2010). Oxford American Handbook of Gastroenterology and Hepatology. Oxford: Oxford University Press, USA. p. 165. ISBN 978-0199830121. 978-0199830121
Kuntz, Erwin (2008). Hepatology: Textbook and Atlas. Germany: Springer. p. 38. ISBN 978-3-540-76838-8. 978-3-540-76838-8
Sullivan KM, Gourley GR (2011). "Jaundice". Pediatric Gastrointestinal and Liver Disease. Elsevier. pp. 176–186.e3. doi:10.1016/b978-1-4377-0774-8.10017-x. ISBN 978-1-4377-0774-8. 978-1-4377-0774-8
Sullivan, Kara M.; Gourley, Glenn R. (1 January 2011), Wyllie, Robert; Hyams, Jeffrey S. (eds.), "17 - Jaundice", Pediatric Gastrointestinal and Liver Disease (Fourth Edition), Saint Louis: W.B. Saunders, pp. 176–186.e3, doi:10.1016/b978-1-4377-0774-8.10017-x, ISBN 978-1-4377-0774-8, retrieved 14 February 2025 978-1-4377-0774-8
Tietze KJ (2012). "Review of Laboratory and Diagnostic Tests". Clinical Skills for Pharmacists. Elsevier. pp. 86–122. doi:10.1016/b978-0-323-07738-5.10005-5. ISBN 978-0-323-07738-5. 978-0-323-07738-5
Moyer KD, Balistreri WF (2011). "Liver Disease Associated with Systemic Disorders". In Kliegman RM, Stanton BF, St Geme JW, Schor NF, Behrman RE (eds.). Nelson Textbook of Pediatrics. Saunders. p. 1405. ISBN 978-1-4377-0755-7. 978-1-4377-0755-7
Tietze KJ (2012). "Review of Laboratory and Diagnostic Tests". Clinical Skills for Pharmacists. Elsevier. pp. 86–122. doi:10.1016/b978-0-323-07738-5.10005-5. ISBN 978-0-323-07738-5. 978-0-323-07738-5
Kalakonda A, John S (2019). "Physiology, Bilirubin article-18281". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID 29261920. Retrieved 22 December 2019. This fraction of conjugated bilirubin gets covalently bound to albumin, and is called delta bilirubin or delta fraction or biliprotein. As the delta bilirubin is bound to albumin, its clearance from serum takes about 12–14 days (equivalent to the half-life of albumin) in contrast to the usual 2 to 4 hours (half-life of bilirubin). http://www.ncbi.nlm.nih.gov/books/NBK470290/
"Unconjugated Hyperbilirubinemia: Practice Essentials, Background, Pathophysiology". Medscape Reference. 4 March 2019. Retrieved 6 May 2019. https://emedicine.medscape.com/article/178841-overview#a2
Kalakonda A, John S (2019). "Physiology, Bilirubin article-18281". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID 29261920. Retrieved 22 December 2019. This fraction of conjugated bilirubin gets covalently bound to albumin, and is called delta bilirubin or delta fraction or biliprotein. As the delta bilirubin is bound to albumin, its clearance from serum takes about 12–14 days (equivalent to the half-life of albumin) in contrast to the usual 2 to 4 hours (half-life of bilirubin). http://www.ncbi.nlm.nih.gov/books/NBK470290/
Watson D, Rogers JA (May 1961). "A study of six representative methods of plasma bilirubin analysis". Journal of Clinical Pathology. 14 (3): 271–8. doi:10.1136/jcp.14.3.271. PMC 480210. PMID 13783422. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC480210
Rolinski B, Küster H, Ugele B, Gruber R, Horn K (October 2001). "Total bilirubin measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care". Clinical Chemistry. 47 (10): 1845–7. doi:10.1093/clinchem/47.10.1845. PMID 11568098. http://www.clinchem.org/cgi/pmidlookup?view=long&pmid=11568098
"SI Units". NIST. 12 April 2010. https://www.nist.gov/pml/owm/metric-si/si-units
MedlinePlus Encyclopedia: 003479 /wiki/MedlinePlus
"Harmonisation of Reference Intervals" (PDF). Pathology Harmony. Archived from the original (PDF) on 18 December 2014. Retrieved 23 September 2014. https://web.archive.org/web/20141218052020/http://www.pathologyharmony.co.uk/graphics/Pathology%20Harmony%20II%20%20for%20web.pdf
Golonka D. "Digestive Disorders Health Center: Bilirubin". WebMD. p. 3. Archived from the original on 1 January 2010. Retrieved 14 January 2010. http://www.webmd.com/digestive-disorders/Bilirubin-15434?page=3
MedlinePlus Encyclopedia: CHEM-20 /wiki/MedlinePlus
Golonka D. "Digestive Disorders Health Center: Bilirubin". WebMD. p. 3. Archived from the original on 1 January 2010. Retrieved 14 January 2010. http://www.webmd.com/digestive-disorders/Bilirubin-15434?page=3
"Laboratory tests". Archived from the original on 13 August 2007. Retrieved 14 August 2007. http://www.sh.lsuhsc.edu/fammed/OutpatientManual/content.html
Stricker R, Eberhart R, Chevailler MC, Quinn FA, Bischof P, Stricker R (2006). "Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer". Clinical Chemistry and Laboratory Medicine. 44 (7): 883–7. doi:10.1515/CCLM.2006.160. PMID 16776638. S2CID 524952. /wiki/Doi_(identifier)
"Bilirubin - urine: MedlinePlus Medical Encyclopedia". medlineplus.gov. Retrieved 31 October 2023. https://medlineplus.gov/ency/article/003595.htm
"Urinalysis: three types of examinations". Lab Tests Online (USA). Retrieved 16 August 2013. http://labtestsonline.org/understanding/analytes/urinalysis/ui-exams/start/1
Roxe, D. M.; Walker, H. K.; Hall, W. D.; Hurst, J. W. (1990). "Urinalysis". Clinical Methods: The History, Physical, and Laboratory Examinations. Butterworths. ISBN 9780409900774. PMID 21250145. 9780409900774
Roxe, D. M.; Walker, H. K.; Hall, W. D.; Hurst, J. W. (1990). "Urinalysis". Clinical Methods: The History, Physical, and Laboratory Examinations. Butterworths. ISBN 9780409900774. PMID 21250145. 9780409900774
Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16. https://books.google.com/books?id=PZfDTn6BTEAC&q=irving+london+bilirubin&pg=PA9
Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16. https://books.google.com/books?id=PZfDTn6BTEAC&q=irving+london+bilirubin&pg=PA9
Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16. https://books.google.com/books?id=PZfDTn6BTEAC&q=irving+london+bilirubin&pg=PA9
Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16. https://books.google.com/books?id=PZfDTn6BTEAC&q=irving+london+bilirubin&pg=PA9
Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16. https://books.google.com/books?id=PZfDTn6BTEAC&q=irving+london+bilirubin&pg=PA9
Hian Siong Leon Maria Tjen (30 January 1979). "Cholescintigraphy: The clinical application of 99mTechnetium-diethyl-IDA to the investigation of the liver and biliary tract. PhD thesis, Utrecht University" (PDF). Archived (PDF) from the original on 3 November 2021. https://inis.iaea.org/collection/NCLCollectionStore/_Public/10/461/10461419.pdf
Lightner DA (2013). "Early Scientific Investigations". Bilirubin: Jekyll and Hyde Pigment of Life. Progress in the Chemistry of Organic Natural Products. Vol. 98. pp. 9–179. doi:10.1007/978-3-7091-1637-1_2. ISBN 978-3-7091-1636-4. 978-3-7091-1636-4
Merriam-Webster, Merriam-Webster's Unabridged Dictionary, Merriam-Webster, archived from the original on 25 May 2020, retrieved 14 January 2018. /wiki/Merriam-Webster
Elsevier, Dorland's Illustrated Medical Dictionary, Elsevier, archived from the original on 11 January 2014, retrieved 14 January 2018. /wiki/Elsevier
Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16. https://books.google.com/books?id=PZfDTn6BTEAC&q=irving+london+bilirubin&pg=PA9
Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16. https://books.google.com/books?id=PZfDTn6BTEAC&q=irving+london+bilirubin&pg=PA9
Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16. https://books.google.com/books?id=PZfDTn6BTEAC&q=irving+london+bilirubin&pg=PA9
Hopper, Christopher P.; Zambrana, Paige N.; Goebel, Ulrich; Wollborn, Jakob (2021). "A brief history of carbon monoxide and its therapeutic origins". Nitric Oxide. 111–112: 45–63. doi:10.1016/j.niox.2021.04.001. PMID 33838343. S2CID 233205099. https://linkinghub.elsevier.com/retrieve/pii/S1089860321000367
Berk, Paul D.; Berlin, Nathaniel I. (1977). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 27, 50. https://books.google.com/books?id=PZfDTn6BTEAC&q=monoxide&pg=PA9
Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16. https://books.google.com/books?id=PZfDTn6BTEAC&q=irving+london+bilirubin&pg=PA9
Barkan, Georg; Schales, Otto (1938). "A Hæmoglobin from Bile Pigment". Nature. 142 (3601): 836–837. Bibcode:1938Natur.142..836B. doi:10.1038/142836b0. ISSN 1476-4687. S2CID 4073510. https://www.nature.com/articles/142836b0
Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16. https://books.google.com/books?id=PZfDTn6BTEAC&q=irving+london+bilirubin&pg=PA9
"Bilirubin". American Chemical Society. Retrieved 28 May 2021. https://www.acs.org/content/acs/en/molecule-of-the-week/archive/b/bilirubin.html
Hopper, Christopher P.; Zambrana, Paige N.; Goebel, Ulrich; Wollborn, Jakob (2021). "A brief history of carbon monoxide and its therapeutic origins". Nitric Oxide. 111–112: 45–63. doi:10.1016/j.niox.2021.04.001. PMID 33838343. S2CID 233205099. https://linkinghub.elsevier.com/retrieve/pii/S1089860321000367
Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16. https://books.google.com/books?id=PZfDTn6BTEAC&q=irving+london+bilirubin&pg=PA9
Hopper, Christopher P.; Zambrana, Paige N.; Goebel, Ulrich; Wollborn, Jakob (2021). "A brief history of carbon monoxide and its therapeutic origins". Nitric Oxide. 111–112: 45–63. doi:10.1016/j.niox.2021.04.001. PMID 33838343. S2CID 233205099. https://linkinghub.elsevier.com/retrieve/pii/S1089860321000367
Berk, Paul D.; Berlin, Nathaniel I. (1977). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 27, 50. https://books.google.com/books?id=PZfDTn6BTEAC&q=monoxide&pg=PA9