Erasure-correcting codes, or simply erasure codes, for distributed and cloud storage systems, are becoming more and more popular as a result of the present spike in demand for cloud computing and storage services. This has inspired researchers in the fields of information and coding theory to investigate new facets of codes that are specifically suited for use with storage systems.
It is well-known that LRC is a code that needs only a limited set of other symbols to be accessed in order to restore every symbol in a codeword. This idea is very important for distributed and cloud storage systems since the most common error case is when one storage node fails (erasure). The main objective is to recover as much data as possible from the fewest additional storage nodes in order to restore the node. Hence, Locally Recoverable Codes are crucial for such systems.
The following definition of the LRC follows from the description above: an [ n , k , r ] {\displaystyle [n,k,r]} -Locally Recoverable Code (LRC) of length n {\displaystyle n} is a code that produces an n {\displaystyle n} -symbol codeword from k {\displaystyle k} information symbols, and for any symbol of the codeword, there exist at most r {\displaystyle r} other symbols such that the value of the symbol can be recovered from them. The locality parameter satisfies 1 ≤ r ≤ k {\displaystyle 1\leq r\leq k} because the entire codeword can be found by accessing k {\displaystyle k} symbols other than the erased symbol. Furthermore, Locally Recoverable Codes, having the minimum distance d {\displaystyle d} , can recover d − 1 {\displaystyle d-1} erasures.
Let C {\displaystyle C} be a [ n , k , d ] q {\displaystyle [n,k,d]_{q}} linear code. For i ∈ { 1 , … , n } {\displaystyle i\in \{1,\ldots ,n\}} , let us denote by r i {\displaystyle r_{i}} the minimum number of other coordinates we have to look at to recover an erasure in coordinate i {\displaystyle i} . The number r i {\displaystyle r_{i}} is said to be the locality of the i {\displaystyle i} -th coordinate of the code. The locality of the code is defined as
An [ n , k , d , r ] q {\displaystyle [n,k,d,r]_{q}} locally recoverable code (LRC) is an [ n , k , d ] q {\displaystyle [n,k,d]_{q}} linear code C ∈ F q n {\displaystyle C\in \mathbb {F} _{q}^{n}} with locality r {\displaystyle r} .
Let C {\displaystyle C} be an [ n , k , d ] q {\displaystyle [n,k,d]_{q}} -locally recoverable code. Then an erased component can be recovered linearly,6 i.e. for every i ∈ { 1 , … , n } {\displaystyle i\in \{1,\ldots ,n\}} , the space of linear equations of the code contains elements of the form x i = f ( x i 1 , … , x i r ) {\displaystyle x_{i}=f(x_{i_{1}},\ldots ,x_{i_{r}})} , where i j ≠ i {\displaystyle i_{j}\neq i} .
Theorem7 Let n = ( r + 1 ) s {\displaystyle n=(r+1)s} and let C {\displaystyle C} be an [ n , k , d ] q {\displaystyle [n,k,d]_{q}} -locally recoverable code having s {\displaystyle s} disjoint locality sets of size r + 1 {\displaystyle r+1} . Then
An [ n , k , d , r ] q {\displaystyle [n,k,d,r]_{q}} -LRC C {\displaystyle C} is said to be optimal if the minimum distance of C {\displaystyle C} satisfies
Let f ∈ F q [ x ] {\displaystyle f\in \mathbb {F} _{q}[x]} be a polynomial and let ℓ {\displaystyle \ell } be a positive integer. Then f {\displaystyle f} is said to be ( r {\displaystyle r} , ℓ {\displaystyle \ell } )-good if
We say that { A 1 , … , A ℓ {\displaystyle A_{1},\ldots ,A_{\ell }} } is a splitting covering for f {\displaystyle f} .8
The Tamo–Barg construction utilizes good polynomials.9
We will use x 5 ∈ F 41 [ x ] {\displaystyle x^{5}\in \mathbb {F} _{41}[x]} to construct [ 15 , 8 , 6 , 4 ] {\displaystyle [15,8,6,4]} -LRC. Notice that the degree of this polynomial is 5, and it is constant on A i {\displaystyle A_{i}} for i ∈ { 1 , … , 8 } {\displaystyle i\in \{1,\ldots ,8\}} , where A 1 = { 1 , 10 , 16 , 18 , 37 } {\displaystyle A_{1}=\{1,10,16,18,37\}} , A 2 = 2 A 1 {\displaystyle A_{2}=2A_{1}} , A 3 = 3 A 1 {\displaystyle A_{3}=3A_{1}} , A 4 = 4 A 1 {\displaystyle A_{4}=4A_{1}} , A 5 = 5 A 1 {\displaystyle A_{5}=5A_{1}} , A 6 = 6 A 1 {\displaystyle A_{6}=6A_{1}} , A 7 = 11 A 1 {\displaystyle A_{7}=11A_{1}} , and A 8 = 15 A 1 {\displaystyle A_{8}=15A_{1}} : A 1 5 = { 1 } {\displaystyle A_{1}^{5}=\{1\}} , A 2 5 = { 32 } {\displaystyle A_{2}^{5}=\{32\}} , A 3 5 = { 38 } {\displaystyle A_{3}^{5}=\{38\}} , A 4 5 = { 40 } {\displaystyle A_{4}^{5}=\{40\}} , A 5 5 = { 9 } {\displaystyle A_{5}^{5}=\{9\}} , A 6 5 = { 27 } {\displaystyle A_{6}^{5}=\{27\}} , A 7 5 = { 3 } {\displaystyle A_{7}^{5}=\{3\}} , A 8 5 = { 14 } {\displaystyle A_{8}^{5}=\{14\}} . Hence, x 5 {\displaystyle x^{5}} is a ( 4 , 8 ) {\displaystyle (4,8)} -good polynomial over F 41 {\displaystyle \mathbb {F} _{41}} by the definition. Now, we will use this polynomial to construct a code of dimension k = 8 {\displaystyle k=8} and length n = 15 {\displaystyle n=15} over F 41 {\displaystyle \mathbb {F} _{41}} . The locality of this code is 4, which will allow us to recover a single server failure by looking at the information contained in at most 4 other servers.
Next, let us define the encoding polynomial: f a ( x ) = ∑ i = 0 r − 1 f i ( x ) x i {\displaystyle f_{a}(x)=\sum _{i=0}^{r-1}f_{i}(x)x^{i}} , where f i ( x ) = ∑ i = 0 k r − 1 a i , j g ( x ) j {\displaystyle f_{i}(x)=\sum _{i=0}^{{\frac {k}{r}}-1}a_{i,j}g(x)^{j}} . So, f a ( x ) = {\displaystyle f_{a}(x)=} a 0 , 0 + {\displaystyle a_{0,0}+} a 0 , 1 x 5 + {\displaystyle a_{0,1}x^{5}+} a 1 , 0 x + {\displaystyle a_{1,0}x+} a 1 , 1 x 6 + {\displaystyle a_{1,1}x^{6}+} a 2 , 0 x 2 + {\displaystyle a_{2,0}x^{2}+} a 2 , 1 x 7 + {\displaystyle a_{2,1}x^{7}+} a 3 , 0 x 3 + {\displaystyle a_{3,0}x^{3}+} a 3 , 1 x 8 {\displaystyle a_{3,1}x^{8}} .
Thus, we can use the obtained encoding polynomial if we take our data to encode as the row vector a = {\displaystyle a=} ( a 0 , 0 , a 0 , 1 , a 1 , 0 , a 1 , 1 , a 2 , 0 , a 2 , 1 , a 3 , 0 , a 3 , 1 ) {\displaystyle (a_{0,0},a_{0,1},a_{1,0},a_{1,1},a_{2,0},a_{2,1},a_{3,0},a_{3,1})} . Encoding the vector m {\displaystyle m} to a length 15 message vector c {\displaystyle c} by multiplying m {\displaystyle m} by the generator matrix
For example, the encoding of information vector m = ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) {\displaystyle m=(1,1,1,1,1,1,1,1)} gives the codeword c = m G = ( 8 , 8 , 5 , 9 , 21 , 3 , 36 , 31 , 32 , 12 , 2 , 20 , 37 , 33 , 21 ) {\displaystyle c=mG=(8,8,5,9,21,3,36,31,32,12,2,20,37,33,21)} .
Observe that we constructed an optimal LRC; therefore, using the Singleton bound, we have that the distance of this code is d = n − k − ⌈ k r ⌉ + 2 = 15 − 8 − 2 + 2 = 7 {\displaystyle d=n-k-\left\lceil {\frac {k}{r}}\right\rceil +2=15-8-2+2=7} . Thus, we can recover any 6 erasures from our codeword by looking at no more than 8 other components.
A code C {\displaystyle C} has all-symbol locality r {\displaystyle r} and availability t {\displaystyle t} if every code symbol can be recovered from t {\displaystyle t} disjoint repair sets of other symbols, each set of size at most r {\displaystyle r} symbols. Such codes are called ( r , t ) a {\displaystyle (r,t)_{a}} -LRC.10
Theorem The minimum distance of [ n , k , d ] q {\displaystyle [n,k,d]_{q}} -LRC having locality r {\displaystyle r} and availability t {\displaystyle t} satisfies the upper bound
If the code is systematic and locality and availability apply only to its information symbols, then the code has information locality r {\displaystyle r} and availability t {\displaystyle t} , and is called ( r , t ) i {\displaystyle (r,t)_{i}} -LRC.11
Theorem12 The minimum distance d {\displaystyle d} of an [ n , k , d ] q {\displaystyle [n,k,d]_{q}} linear ( r , t ) i {\displaystyle (r,t)_{i}} -LRC satisfies the upper bound
Papailiopoulos, Dimitris S.; Dimakis, Alexandros G. (2012), "Locally repairable codes", 2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, USA: IEEE, pp. 2771–2775, arXiv:1206.3804, doi:10.1109/ISIT.2012.6284027, ISBN 978-1-4673-2579-0 978-1-4673-2579-0 ↩
Barg, A.; Tamo, I.; Vlăduţ, S. (2015), "Locally recoverable codes on algebraic curves", 2015 IEEE International Symposium on Information Theory, Hong Kong, China: IEEE, pp. 1252–1256, arXiv:1603.08876, doi:10.1109/ISIT.2015.7282656, ISBN 978-1-4673-7704-1 978-1-4673-7704-1 ↩
Cadambe, V. R.; Mazumdar, A. (2015), "Bounds on the Size of Locally Recoverable Codes", IEEE Transactions on Information Theory, 61 (11), IEEE: 5787–5794, doi:10.1109/TIT.2015.2477406 /wiki/Doi_(identifier) ↩
Dukes, A.; Ferraguti, A.; Micheli, G. (2022), "Optimal selection for good polynomials of degree up to five", Designs, Codes and Cryptography, 90 (6), IEEE: 1427–1436, arXiv:2104.01434, doi:10.1007/s10623-022-01046-y /wiki/ArXiv_(identifier) ↩
Haymaker, K.; Malmskog, B.; Matthews, G. (2022), Locally Recoverable Codes with Availability t≥2 from Fiber Products of Curves, doi:10.3934/amc.2018020 /wiki/Doi_(identifier) ↩
Papailiopoulos, Dimitris S.; Dimakis, Alexandros G. (2012), "Locally repairable codes", 2012 IEEE International Symposium on Information Theory, Cambridge, MA, USA, pp. 2771–2775, arXiv:1206.3804, doi:10.1109/ISIT.2012.6284027, ISBN 978-1-4673-2579-0{{citation}}: CS1 maint: location missing publisher (link) 978-1-4673-2579-0 ↩
Cadambe, V.; Mazumdar, A. (2013), "An upper bound on the size of locally recoverable codes", 2013 International Symposium on Network Coding, Calgary, AB, Canada, pp. 1–5, arXiv:1308.3200, doi:10.1109/NetCod.2013.6570829, ISBN 978-1-4799-0823-3{{citation}}: CS1 maint: location missing publisher (link) 978-1-4799-0823-3 ↩
Micheli, G. (2020), "Constructions of Locally Recoverable Codes Which are Optimal", IEEE Transactions on Information Theory, 66: 167–175, arXiv:1806.11492, doi:10.1109/TIT.2019.2939464 /wiki/ArXiv_(identifier) ↩
Tamo, I.; Barg, A. (2014), "A family of optimal locally recoverable codes", 2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, pp. 686–690, doi:10.1109/ISIT.2014.6874920, ISBN 978-1-4799-5186-4{{citation}}: CS1 maint: location missing publisher (link) 978-1-4799-5186-4 ↩
Huang, P.; Yaakobi, E.; Uchikawa, H.; Siegel, P.H. (2015), "Linear locally repairable codes with availability", 2015 IEEE International Symposium on Information Theory, Hong Kong, China, pp. 1871–1875, doi:10.1109/ISIT.2015.7282780, ISBN 978-1-4673-7704-1{{citation}}: CS1 maint: location missing publisher (link) 978-1-4673-7704-1 ↩
Tamo, I.; Barg, A. (2014), "Bounds on locally recoverable codes with multiple recovering sets", 2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, pp. 691–695, arXiv:1402.0916, doi:10.1109/ISIT.2014.6874921, ISBN 978-1-4799-5186-4{{citation}}: CS1 maint: location missing publisher (link) 978-1-4799-5186-4 ↩
Wang, A.; Zhang, Z. (2014), "Repair locality with multiple erasure tolerance", IEEE Transactions on Information Theory, 60 (11): 6979–6987, arXiv:1306.4774, doi:10.1109/TIT.2014.2351404 /wiki/ArXiv_(identifier) ↩