Let A {\displaystyle {\mathcal {A}}} be a *-algebra with unit e {\displaystyle e} . An element a ∈ A {\displaystyle a\in {\mathcal {A}}} is called unitary if a a ∗ = a ∗ a = e {\displaystyle aa^{*}=a^{*}a=e} . In other words, if a {\displaystyle a} is invertible and a − 1 = a ∗ {\displaystyle a^{-1}=a^{*}} holds, then a {\displaystyle a} is unitary.2
The set of unitary elements is denoted by A U {\displaystyle {\mathcal {A}}_{U}} or U ( A ) {\displaystyle U({\mathcal {A}})} .
A special case from particular importance is the case where A {\displaystyle {\mathcal {A}}} is a complete normed *-algebra. This algebra satisfies the C*-identity ( ‖ a ∗ a ‖ = ‖ a ‖ 2 ∀ a ∈ A {\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}} ) and is called a C*-algebra.
Let A {\displaystyle {\mathcal {A}}} be a unital C*-algebra, then:
Let A {\displaystyle {\mathcal {A}}} be a unital *-algebra and a , b ∈ A U {\displaystyle a,b\in {\mathcal {A}}_{U}} . Then:
Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Kadison & Ringrose 1983, p. 271. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Dixmier 1977, pp. 4–5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Blackadar 2006, pp. 57, 63. - Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. pp. 57, 63. ISBN 3-540-28486-9. ↩
Dixmier 1977, p. 9. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩