Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Normal element

In mathematics, an element of a *-algebra is called normal if it commutates with its adjoint.

We don't have any images related to Normal element yet.
We don't have any YouTube videos related to Normal element yet.
We don't have any PDF documents related to Normal element yet.
We don't have any Books related to Normal element yet.
We don't have any archived web articles related to Normal element yet.

Definition

Let A {\displaystyle {\mathcal {A}}} be a *-Algebra. An element a ∈ A {\displaystyle a\in {\mathcal {A}}} is called normal if it commutes with a ∗ {\displaystyle a^{*}} , i.e. it satisfies the equation a a ∗ = a ∗ a {\displaystyle aa^{*}=a^{*}a} .2

The set of normal elements is denoted by A N {\displaystyle {\mathcal {A}}_{N}} or N ( A ) {\displaystyle N({\mathcal {A}})} .

A special case of particular importance is the case where A {\displaystyle {\mathcal {A}}} is a complete normed *-algebra, that satisfies the C*-identity ( ‖ a ∗ a ‖ = ‖ a ‖ 2   ∀ a ∈ A {\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}} ), which is called a C*-algebra.

Examples

Criteria

Let A {\displaystyle {\mathcal {A}}} be a *-algebra. Then:

  • An element a ∈ A {\displaystyle a\in {\mathcal {A}}} is normal if and only if the *-subalgebra generated by a {\displaystyle a} , meaning the smallest *-algebra containing a {\displaystyle a} , is commutative.6
  • Every element a ∈ A {\displaystyle a\in {\mathcal {A}}} can be uniquely decomposed into a real and imaginary part, which means there exist self-adjoint elements a 1 , a 2 ∈ A s a {\displaystyle a_{1},a_{2}\in {\mathcal {A}}_{sa}} , such that a = a 1 + i a 2 {\displaystyle a=a_{1}+\mathrm {i} a_{2}} , where i {\displaystyle \mathrm {i} } denotes the imaginary unit. Exactly then a {\displaystyle a} is normal if a 1 a 2 = a 2 a 1 {\displaystyle a_{1}a_{2}=a_{2}a_{1}} , i.e. real and imaginary part commutate.7

Properties

In *-algebras

Let a ∈ A N {\displaystyle a\in {\mathcal {A}}_{N}} be a normal element of a *-algebra A {\displaystyle {\mathcal {A}}} . Then:

  • The adjoint element a ∗ {\displaystyle a^{*}} is also normal, since a = ( a ∗ ) ∗ {\displaystyle a=(a^{*})^{*}} holds for the involution *.8

In C*-algebras

Let a ∈ A N {\displaystyle a\in {\mathcal {A}}_{N}} be a normal element of a C*-algebra A {\displaystyle {\mathcal {A}}} . Then:

  • It is ‖ a 2 ‖ = ‖ a ‖ 2 {\displaystyle \left\|a^{2}\right\|=\left\|a\right\|^{2}} , since for normal elements using the C*-identity ‖ a 2 ‖ 2 = ‖ ( a 2 ) ( a 2 ) ∗ ‖ = ‖ ( a ∗ a ) ∗ ( a ∗ a ) ‖ = ‖ a ∗ a ‖ 2 = ( ‖ a ‖ 2 ) 2 {\displaystyle \left\|a^{2}\right\|^{2}=\left\|(a^{2})(a^{2})^{*}\right\|=\left\|(a^{*}a)^{*}(a^{*}a)\right\|=\left\|a^{*}a\right\|^{2}=\left(\left\|a\right\|^{2}\right)^{2}} holds.9
  • Every normal element is a normaloid element, i.e. the spectral radius r ( a ) {\displaystyle r(a)} equals the norm of a {\displaystyle a} , i.e. r ( a ) = ‖ a ‖ {\displaystyle r(a)=\left\|a\right\|} .10 This follows from the spectral radius formula by repeated application of the previous property.11
  • A continuous functional calculus can be developed which – put simply – allows the application of continuous functions on the spectrum of a {\displaystyle a} to a {\displaystyle a} .12

See also

Notes

  • Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
  • Heuser, Harro (1982). Functional analysis. Translated by Horvath, John. John Wiley & Sons Ltd. ISBN 0-471-10069-2.
  • Werner, Dirk (2018). Funktionalanalysis (in German) (8 ed.). Springer. ISBN 978-3-662-55407-4.

References

  1. Dixmier 1977, p. 4. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  2. Dixmier 1977, p. 4. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  3. Dixmier 1977, p. 4. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  4. Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  5. Dixmier 1977, p. 13. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  6. Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  7. Dixmier 1977, p. 4. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  8. Dixmier 1977, pp. 3–4. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  9. Werner 2018, p. 518. - Werner, Dirk (2018). Funktionalanalysis (in German) (8 ed.). Springer. ISBN 978-3-662-55407-4.

  10. Heuser 1982, p. 390. - Heuser, Harro (1982). Functional analysis. Translated by Horvath, John. John Wiley & Sons Ltd. ISBN 0-471-10069-2.

  11. Werner 2018, pp. 284–285, 518. - Werner, Dirk (2018). Funktionalanalysis (in German) (8 ed.). Springer. ISBN 978-3-662-55407-4.

  12. Dixmier 1977, p. 13. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.