Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Unitary element

In mathematics, an element of a *-algebra is called unitary if it is invertible and its inverse element is the same as its adjoint element.

We don't have any images related to Unitary element yet.
We don't have any YouTube videos related to Unitary element yet.
We don't have any PDF documents related to Unitary element yet.
We don't have any Books related to Unitary element yet.
We don't have any archived web articles related to Unitary element yet.

Definition

Let A {\displaystyle {\mathcal {A}}} be a *-algebra with unit e {\displaystyle e} . An element a ∈ A {\displaystyle a\in {\mathcal {A}}} is called unitary if a a ∗ = a ∗ a = e {\displaystyle aa^{*}=a^{*}a=e} . In other words, if a {\displaystyle a} is invertible and a − 1 = a ∗ {\displaystyle a^{-1}=a^{*}} holds, then a {\displaystyle a} is unitary.2

The set of unitary elements is denoted by A U {\displaystyle {\mathcal {A}}_{U}} or U ( A ) {\displaystyle U({\mathcal {A}})} .

A special case from particular importance is the case where A {\displaystyle {\mathcal {A}}} is a complete normed *-algebra. This algebra satisfies the C*-identity ( ‖ a ∗ a ‖ = ‖ a ‖ 2   ∀ a ∈ A {\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}} ) and is called a C*-algebra.

Criteria

  • Let A {\displaystyle {\mathcal {A}}} be a unital C*-algebra and a ∈ A N {\displaystyle a\in {\mathcal {A}}_{N}} a normal element. Then, a {\displaystyle a} is unitary if the spectrum σ ( a ) {\displaystyle \sigma (a)} consists only of elements of the circle group T {\displaystyle \mathbb {T} } , i.e. σ ( a ) ⊆ T = { λ ∈ C ∣ | λ | = 1 } {\displaystyle \sigma (a)\subseteq \mathbb {T} =\{\lambda \in \mathbb {C} \mid |\lambda |=1\}} .3

Examples

  • The unit e {\displaystyle e} is unitary.4

Let A {\displaystyle {\mathcal {A}}} be a unital C*-algebra, then:

  • Every projection, i.e. every element a ∈ A {\displaystyle a\in {\mathcal {A}}} with a = a ∗ = a 2 {\displaystyle a=a^{*}=a^{2}} , is unitary. For the spectrum of a projection consists of at most 0 {\displaystyle 0} and 1 {\displaystyle 1} , as follows from the continuous functional calculus.5
  • If a ∈ A N {\displaystyle a\in {\mathcal {A}}_{N}} is a normal element of a C*-algebra A {\displaystyle {\mathcal {A}}} , then for every continuous function f {\displaystyle f} on the spectrum σ ( a ) {\displaystyle \sigma (a)} the continuous functional calculus defines an unitary element f ( a ) {\displaystyle f(a)} , if f ( σ ( a ) ) ⊆ T {\displaystyle f(\sigma (a))\subseteq \mathbb {T} } .6

Properties

Let A {\displaystyle {\mathcal {A}}} be a unital *-algebra and a , b ∈ A U {\displaystyle a,b\in {\mathcal {A}}_{U}} . Then:

  • The element a b {\displaystyle ab} is unitary, since ( ( a b ) ∗ ) − 1 = ( b ∗ a ∗ ) − 1 = ( a ∗ ) − 1 ( b ∗ ) − 1 = a b {\textstyle ((ab)^{*})^{-1}=(b^{*}a^{*})^{-1}=(a^{*})^{-1}(b^{*})^{-1}=ab} . In particular, A U {\displaystyle {\mathcal {A}}_{U}} forms a multiplicative group.7
  • The element a {\displaystyle a} is normal.8
  • The adjoint element a ∗ {\displaystyle a^{*}} is also unitary, since a = ( a ∗ ) ∗ {\displaystyle a=(a^{*})^{*}} holds for the involution *.9
  • If A {\displaystyle {\mathcal {A}}} is a C*-algebra, a {\displaystyle a} has norm 1, i.e. ‖ a ‖ = 1 {\displaystyle \left\|a\right\|=1} .10

See also

Notes

  • Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. pp. 57, 63. ISBN 3-540-28486-9.
  • Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
  • Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3.

References

  1. Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  2. Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  3. Kadison & Ringrose 1983, p. 271. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3.

  4. Dixmier 1977, pp. 4–5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  5. Blackadar 2006, pp. 57, 63. - Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. pp. 57, 63. ISBN 3-540-28486-9.

  6. Kadison & Ringrose 1983, p. 271. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3.

  7. Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  8. Dixmier 1977, pp. 4–5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  9. Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.

  10. Dixmier 1977, p. 9. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1.