In mathematics, an element of a *-algebra is called unitary if it is invertible and its inverse element is the same as its adjoint element.
Definition
Let A {\displaystyle {\mathcal {A}}} be a *-algebra with unit e {\displaystyle e} . An element a ∈ A {\displaystyle a\in {\mathcal {A}}} is called unitary if a a ∗ = a ∗ a = e {\displaystyle aa^{*}=a^{*}a=e} . In other words, if a {\displaystyle a} is invertible and a − 1 = a ∗ {\displaystyle a^{-1}=a^{*}} holds, then a {\displaystyle a} is unitary.2
The set of unitary elements is denoted by A U {\displaystyle {\mathcal {A}}_{U}} or U ( A ) {\displaystyle U({\mathcal {A}})} .
A special case from particular importance is the case where A {\displaystyle {\mathcal {A}}} is a complete normed *-algebra. This algebra satisfies the C*-identity ( ‖ a ∗ a ‖ = ‖ a ‖ 2 ∀ a ∈ A {\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}} ) and is called a C*-algebra.
Criteria
- Let A {\displaystyle {\mathcal {A}}} be a unital C*-algebra and a ∈ A N {\displaystyle a\in {\mathcal {A}}_{N}} a normal element. Then, a {\displaystyle a} is unitary if the spectrum σ ( a ) {\displaystyle \sigma (a)} consists only of elements of the circle group T {\displaystyle \mathbb {T} } , i.e. σ ( a ) ⊆ T = { λ ∈ C ∣ | λ | = 1 } {\displaystyle \sigma (a)\subseteq \mathbb {T} =\{\lambda \in \mathbb {C} \mid |\lambda |=1\}} .3
Examples
- The unit e {\displaystyle e} is unitary.4
Let A {\displaystyle {\mathcal {A}}} be a unital C*-algebra, then:
- Every projection, i.e. every element a ∈ A {\displaystyle a\in {\mathcal {A}}} with a = a ∗ = a 2 {\displaystyle a=a^{*}=a^{2}} , is unitary. For the spectrum of a projection consists of at most 0 {\displaystyle 0} and 1 {\displaystyle 1} , as follows from the continuous functional calculus.5
- If a ∈ A N {\displaystyle a\in {\mathcal {A}}_{N}} is a normal element of a C*-algebra A {\displaystyle {\mathcal {A}}} , then for every continuous function f {\displaystyle f} on the spectrum σ ( a ) {\displaystyle \sigma (a)} the continuous functional calculus defines an unitary element f ( a ) {\displaystyle f(a)} , if f ( σ ( a ) ) ⊆ T {\displaystyle f(\sigma (a))\subseteq \mathbb {T} } .6
Properties
Let A {\displaystyle {\mathcal {A}}} be a unital *-algebra and a , b ∈ A U {\displaystyle a,b\in {\mathcal {A}}_{U}} . Then:
- The element a b {\displaystyle ab} is unitary, since ( ( a b ) ∗ ) − 1 = ( b ∗ a ∗ ) − 1 = ( a ∗ ) − 1 ( b ∗ ) − 1 = a b {\textstyle ((ab)^{*})^{-1}=(b^{*}a^{*})^{-1}=(a^{*})^{-1}(b^{*})^{-1}=ab} . In particular, A U {\displaystyle {\mathcal {A}}_{U}} forms a multiplicative group.7
- The element a {\displaystyle a} is normal.8
- The adjoint element a ∗ {\displaystyle a^{*}} is also unitary, since a = ( a ∗ ) ∗ {\displaystyle a=(a^{*})^{*}} holds for the involution *.9
- If A {\displaystyle {\mathcal {A}}} is a C*-algebra, a {\displaystyle a} has norm 1, i.e. ‖ a ‖ = 1 {\displaystyle \left\|a\right\|=1} .10
See also
Notes
- Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. pp. 57, 63. ISBN 3-540-28486-9.
- Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
- Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3.
References
Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Kadison & Ringrose 1983, p. 271. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Dixmier 1977, pp. 4–5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Blackadar 2006, pp. 57, 63. - Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. pp. 57, 63. ISBN 3-540-28486-9. ↩
Kadison & Ringrose 1983, p. 271. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, pp. 4–5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, p. 9. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩