Francium is one of the most unstable of the naturally occurring elements: its longest-lived isotope, francium-223, has a half-life of only 22 minutes. The only comparable element is astatine, whose most stable natural isotope, astatine-219 (the alpha daughter of francium-223), has a half-life of 56 seconds, although synthetic astatine-210 is much longer-lived with a half-life of 8.1 hours. All isotopes of francium decay into astatine, radium, or radon. Francium-223 also has a shorter half-life than the longest-lived isotope of each synthetic element up to and including element 105, dubnium.
Francium is an alkali metal whose chemical properties mostly resemble those of caesium. A heavy element with a single valence electron, it has the highest equivalent weight of any element. Liquid francium—if created—should have a surface tension of 0.05092 N/m at its melting point. Francium's melting point was estimated to be around 8.0 °C (46.4 °F); a value of 27 °C (81 °F) is also often encountered. The melting point is uncertain because of the element's extreme rarity and radioactivity; a different extrapolation based on Dmitri Mendeleev's method gave 20 ± 1.5 °C (68.0 ± 2.7 °F). A calculation based on the melting temperatures of binary ionic crystals gives 24.861 ± 0.517 °C (76.750 ± 0.931 °F). The estimated boiling point of 620 °C (1,148 °F) is also uncertain; the estimates 598 °C (1,108 °F) and 677 °C (1,251 °F), as well as the extrapolation from Mendeleev's method of 640 °C (1,184 °F), have also been suggested. The density of francium is expected to be around 2.48 g/cm3 (Mendeleev's method extrapolates 2.4 g/cm3).
As a result of francium's instability, its salts are only known to a small extent. Francium coprecipitates with several caesium salts, such as caesium perchlorate, which results in small amounts of francium perchlorate. This coprecipitation can be used to isolate francium, by adapting the radiocaesium coprecipitation method of Lawrence E. Glendenin and C. M. Nelson. It will additionally coprecipitate with many other caesium salts, including the iodate, the picrate, the tartrate (also rubidium tartrate), the chloroplatinate, and the silicotungstate. It also coprecipitates with silicotungstic acid, and with perchloric acid, without another alkali metal as a carrier, which leads to other methods of separation.
Francium halides are all soluble in water and are expected to be white solids. They are expected to be produced by the reaction of the corresponding halogens. For example, francium chloride would be produced by the reaction of francium and chlorine. Francium chloride has been studied as a pathway to separate francium from other elements, by using the high vapour pressure of the compound, although francium fluoride would have a higher vapour pressure.
Francium nitrate, sulfate, hydroxide, carbonate, acetate, and oxalate, are all soluble in water, while the iodate, picrate, tartrate, chloroplatinate, and silicotungstate are insoluble. The insolubility of these compounds are used to extract francium from other radioactive products, such as zirconium, niobium, molybdenum, tin, antimony, the method mentioned in the section above. Francium oxide is believed to disproportionate to the peroxide and francium metal. The CsFr molecule is predicted to have the heavier element (francium) at the negative end of the dipole, unlike all known heterodiatomic alkali metal molecules. Francium superoxide (FrO2) is expected to have a more covalent character than its lighter congeners; this is attributed to the 6p electrons in francium being more involved in the francium–oxygen bonding. The relativistic destabilisation of the 6p3/2 spinor may make francium compounds in oxidation states higher than +1 possible, such as [FrVF6]−; but this has not been experimentally confirmed.
Francium-223 is the most stable isotope, with a half-life of 21.8 minutes, and it is highly unlikely that an isotope of francium with a longer half-life will ever be discovered or synthesized. Francium-223 is a fifth product of the uranium-235 decay series as a daughter isotope of actinium-227; thorium-227 is the more common daughter. Francium-223 then decays into radium-223 by beta decay (1.149 MeV decay energy), with a minor (0.006%) alpha decay path to astatine-219 (5.4 MeV decay energy).
Due to its instability and rarity, there are no commercial applications for francium. It has been used for research purposes in the fields of chemistry
and of atomic structure. Its use as a potential diagnostic aid for various cancers has also been explored, but this application has been deemed impractical.
Francium's ability to be synthesized, trapped, and cooled, along with its relatively simple atomic structure, has made it the subject of specialized spectroscopy experiments. These experiments have led to more specific information regarding energy levels and the coupling constants between subatomic particles. Studies on the light emitted by laser-trapped francium-210 ions have provided accurate data on transitions between atomic energy levels which are fairly similar to those predicted by quantum theory. Francium is a prospective candidate for searching for CP violation.
Soviet chemist Dmitry Dobroserdov was the first scientist to claim to have found eka-caesium, or francium. In 1925, he observed weak radioactivity in a sample of potassium, another alkali metal, and incorrectly concluded that eka-caesium was contaminating the sample (the radioactivity from the sample was from the naturally occurring potassium radioisotope, potassium-40). He then published a thesis on his predictions of the properties of eka-caesium, in which he named the element russium after his home country. Shortly thereafter, Dobroserdov began to focus on his teaching career at the Polytechnic Institute of Odesa, and he did not pursue the element further.
The following year, English chemists Gerald J. F. Druce and Frederick H. Loring analyzed X-ray photographs of manganese(II) sulfate. They observed spectral lines which they presumed to be of eka-caesium. They announced their discovery of element 87 and proposed the name alkalinium, as it would be the heaviest alkali metal.
The francium atoms leave the gold target as ions, which are neutralized by collision with yttrium and then isolated in a magneto-optical trap (MOT) in a gaseous unconsolidated state. Although the atoms only remain in the trap for about 30 seconds before escaping or undergoing nuclear decay, the process supplies a continual stream of fresh atoms. The result is a steady state containing a fairly constant number of atoms for a much longer time. The original apparatus could trap up to a few thousand atoms, while a later improved design could trap over 300,000 at a time. Sensitive measurements of the light emitted and absorbed by the trapped atoms provided the first experimental results on various transitions between atomic energy levels in francium. Initial measurements show very good agreement between experimental values and calculations based on quantum theory. The research project using this production method relocated to TRIUMF in 2012, where over 106 francium atoms have been held at a time, including large amounts of 209Fr in addition to 207Fr and 221Fr.
Other synthesis methods include bombarding radium with neutrons, and bombarding thorium with protons, deuterons, or helium ions.
223Fr can also be isolated from samples of its parent 227Ac, the francium being milked via elution with NH4Cl–CrO3 from an actinium-containing cation exchanger and purified by passing the solution through a silicon dioxide compound loaded with barium sulfate.
In 1996, the Stony Brook group trapped 3000 atoms in their MOT, which was enough for a video camera to capture the light given off by the atoms as they fluoresce. Francium has not been synthesized in amounts large enough to weigh.
Guruge, Amila Ruwan (January 25, 2023). "Francium". Chemical and Process Engineering. Retrieved February 28, 2023. https://www.arhse.com/francium/
Perey, M. (October 1, 1939). "L'élément 87 : AcK, dérivé de l'actinium". Journal de Physique et le Radium (in French). 10 (10): 435–438. doi:10.1051/jphysrad:019390010010043500. ISSN 0368-3842. https://hal.archives-ouvertes.fr/jpa-00233698/document
Some synthetic elements, like technetium and plutonium, have later been found in nature. /wiki/Technetium
Orozco, Luis A. (2003). "Francium". Chemical and Engineering News. 81 (36): 159. doi:10.1021/cen-v081n036.p159. http://pubs.acs.org/cen/80th/francium.html
Price, Andy (December 20, 2004). "Francium". Retrieved February 19, 2012. http://www.andyscouse.com/pages/francium.htm
Price, Andy (December 20, 2004). "Francium". Retrieved February 19, 2012. http://www.andyscouse.com/pages/francium.htm
CRC Handbook of Chemistry and Physics. Vol. 4. CRC. 2006. p. 12. ISBN 978-0-8493-0474-3. 978-0-8493-0474-3
CRC Handbook of Chemistry and Physics. Vol. 4. CRC. 2006. p. 12. ISBN 978-0-8493-0474-3. 978-0-8493-0474-3
Winter, Mark. "Electron Configuration". Francium. The University of Sheffield. Retrieved April 18, 2007. http://www.webelements.com/webelements/elements/text/Fr/eneg.html
CRC Handbook of Chemistry and Physics. Vol. 4. CRC. 2006. p. 12. ISBN 978-0-8493-0474-3. 978-0-8493-0474-3
Kozhitov, L. V.; Kol'tsov, V. B.; Kol'tsov, A. V. (2003). "Evaluation of the Surface Tension of Liquid Francium". Inorganic Materials. 39 (11): 1138–1141. doi:10.1023/A:1027389223381. S2CID 97764887. /wiki/Doi_(identifier)
Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1970). Analytical Chemistry of Technetium, Promethium, Astatine, and Francium. Translated by R. Kondor. Ann Arbor–Humphrey Science Publishers. p. 269. ISBN 978-0-250-39923-9. 978-0-250-39923-9
CRC Handbook of Chemistry and Physics. Vol. 4. CRC. 2006. p. 12. ISBN 978-0-8493-0474-3. 978-0-8493-0474-3
Oshchapovskii, V. V. (2014). "A New Method of Calculation of the Melting Temperatures of Crystals of Group 1A Metal Halides and Francium Metal". Russian Journal of Inorganic Chemistry. 59 (6): 561–567. doi:10.1134/S0036023614060163. S2CID 98622837. /wiki/Doi_(identifier)
Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1970). Analytical Chemistry of Technetium, Promethium, Astatine, and Francium. Translated by R. Kondor. Ann Arbor–Humphrey Science Publishers. p. 269. ISBN 978-0-250-39923-9. 978-0-250-39923-9
Kozhitov, L. V.; Kol'tsov, V. B.; Kol'tsov, A. V. (2003). "Evaluation of the Surface Tension of Liquid Francium". Inorganic Materials. 39 (11): 1138–1141. doi:10.1023/A:1027389223381. S2CID 97764887. /wiki/Doi_(identifier)
Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1970). Analytical Chemistry of Technetium, Promethium, Astatine, and Francium. Translated by R. Kondor. Ann Arbor–Humphrey Science Publishers. p. 269. ISBN 978-0-250-39923-9. 978-0-250-39923-9
Pauling, Linus (1960). The Nature of the Chemical Bond (Third ed.). Cornell University Press. p. 93. ISBN 978-0-8014-0333-0. {{cite book}}: ISBN / Date incompatibility (help) 978-0-8014-0333-0
Allred, A. L. (1961). "Electronegativity values from thermochemical data". J. Inorg. Nucl. Chem. 17 (3–4): 215–221. doi:10.1016/0022-1902(61)80142-5. /wiki/Doi_(identifier)
Andreev, S.V.; Letokhov, V.S.; Mishin, V.I. (1987). "Laser resonance photoionization spectroscopy of Rydberg levels in Fr". Physical Review Letters. 59 (12): 1274–76. Bibcode:1987PhRvL..59.1274A. doi:10.1103/PhysRevLett.59.1274. PMID 10035190. /wiki/Physical_Review_Letters
Thayer, John S. (2010). "Chap.10 Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Springer. p. 81. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9975-5. 978-1-4020-9975-5
Hyde, E. K. (1952). "Radiochemical Methods for the Isolation of Element 87 (Francium)". J. Am. Chem. Soc. 74 (16): 4181–4184. Bibcode:1952JAChS..74.4181H. doi:10.1021/ja01136a066. hdl:2027/mdp.39015086483156. S2CID 95854270. /wiki/J._Am._Chem._Soc.
E. N K. Hyde Radiochemistry of Francium, Subcommittee on Radiochemistry, National Academy of Sciences-National Research Council; available from the Office of Technical Services, Dept. of Commerce, 1960.
E. N K. Hyde Radiochemistry of Francium, Subcommittee on Radiochemistry, National Academy of Sciences-National Research Council; available from the Office of Technical Services, Dept. of Commerce, 1960.
E. N K. Hyde Radiochemistry of Francium, Subcommittee on Radiochemistry, National Academy of Sciences-National Research Council; available from the Office of Technical Services, Dept. of Commerce, 1960.
Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1970). Analytical Chemistry of Technetium, Promethium, Astatine, and Francium. Translated by R. Kondor. Ann Arbor–Humphrey Science Publishers. p. 269. ISBN 978-0-250-39923-9. 978-0-250-39923-9
Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1970). Analytical Chemistry of Technetium, Promethium, Astatine, and Francium. Translated by R. Kondor. Ann Arbor–Humphrey Science Publishers. p. 269. ISBN 978-0-250-39923-9. 978-0-250-39923-9
Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1970). Analytical Chemistry of Technetium, Promethium, Astatine, and Francium. Translated by R. Kondor. Ann Arbor–Humphrey Science Publishers. p. 269. ISBN 978-0-250-39923-9. 978-0-250-39923-9
Hyde, E. K.; Ghiorso, A.; Seaborg, G. T. (October 10, 1949). Low Mass Francium and Emanation Isotopes of High Alpha Stability (Report). Berkeley, CA: UC Radiation Laboratory. p. 9. UCRL-409. /wiki/Albert_Ghiorso
Thayer, John S. (2010). "Chap.10 Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Springer. p. 81. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9975-5. 978-1-4020-9975-5
Cao, Chang-Su; Hu, Han-Shi; Schwarz, W. H. Eugen; Li, Jun (2022). "Periodic Law of Chemistry Overturns for Superheavy Elements". ChemRxiv (preprint). doi:10.26434/chemrxiv-2022-l798p. Retrieved November 16, 2022. https://chemrxiv.org/engage/chemrxiv/article-details/63730be974b7b6d84cfdda35
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
CRC Handbook of Chemistry and Physics. Vol. 4. CRC. 2006. p. 12. ISBN 978-0-8493-0474-3. 978-0-8493-0474-3
Considine, Glenn D., ed. (2005). Francium, in Van Nostrand's Encyclopedia of Chemistry. New York: Wiley-Interscience. p. 679. ISBN 978-0-471-61525-5. 978-0-471-61525-5
CRC Handbook of Chemistry and Physics. Vol. 4. CRC. 2006. p. 12. ISBN 978-0-8493-0474-3. 978-0-8493-0474-3
"Francium". McGraw-Hill Encyclopedia of Science & Technology. Vol. 7. McGraw-Hill Professional. 2002. pp. 493–494. ISBN 978-0-07-913665-7. 978-0-07-913665-7
Considine, Glenn D., ed. (2005). Chemical Elements, in Van Nostrand's Encyclopedia of Chemistry. New York: Wiley-Interscience. p. 332. ISBN 978-0-471-61525-5. 978-0-471-61525-5
National Nuclear Data Center (1990). "Table of Isotopes decay data". Brookhaven National Laboratory. Archived from the original on October 31, 2006. Retrieved April 4, 2007. https://web.archive.org/web/20061031212436/http://ie.lbl.gov/toi/nuclide.asp?iZA=870223
CRC Handbook of Chemistry and Physics. Vol. 4. CRC. 2006. p. 12. ISBN 978-0-8493-0474-3. 978-0-8493-0474-3
Considine, Glenn D., ed. (2005). Chemical Elements, in Van Nostrand's Encyclopedia of Chemistry. New York: Wiley-Interscience. p. 332. ISBN 978-0-471-61525-5. 978-0-471-61525-5
CRC Handbook of Chemistry and Physics. Vol. 4. CRC. 2006. p. 12. ISBN 978-0-8493-0474-3. 978-0-8493-0474-3
Peppard, D. F.; Mason, G. W.; Gray, P. R.; Mech, J. F. (1952). "Occurrence of the (4n + 1) series in nature" (PDF). Journal of the American Chemical Society. 74 (23): 6081–6084. Bibcode:1952JAChS..74.6081P. doi:10.1021/ja01143a074. https://digital.library.unt.edu/ark:/67531/metadc172698/m2/1/high_res_d/metadc172698.pdf
Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN 1434-601X. S2CID 201664098. /wiki/ArXiv_(identifier)
AME2020 gives 222Rn a lower mass than 222Fr,[27] which would forbid single beta decay, though it is possible within the given error margin and is explicitly predicted by Belli et al.[28]
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
CRC Handbook of Chemistry and Physics. Vol. 4. CRC. 2006. p. 12. ISBN 978-0-8493-0474-3. 978-0-8493-0474-3
Winter, Mark. "Uses". Francium. The University of Sheffield. Retrieved March 25, 2007. http://www.webelements.com/webelements/elements/text/Fr/uses.html
Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. 151–153. ISBN 978-0-19-850341-5. 978-0-19-850341-5
Gagnon, Steve. "Francium". Jefferson Science Associates, LLC. Retrieved April 1, 2007. http://education.jlab.org/itselemental/ele087.html
Considine, Glenn D., ed. (2005). Chemical Elements, in Van Nostrand's Encyclopedia of Chemistry. New York: Wiley-Interscience. p. 332. ISBN 978-0-471-61525-5. 978-0-471-61525-5
Haverlock, T. J.; Mirzadeh, S.; Moyer, B. A. (2003). "Selectivity of calix[4]arene-bis(benzocrown-6) in the complexation and transport of francium ion". J Am Chem Soc. 125 (5): 1126–7. Bibcode:2003JAChS.125.1126H. doi:10.1021/ja0255251. PMID 12553788. /wiki/Bibcode_(identifier)
Price, Andy (December 20, 2004). "Francium". Retrieved February 19, 2012. http://www.andyscouse.com/pages/francium.htm
Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. 151–153. ISBN 978-0-19-850341-5. 978-0-19-850341-5
Gomez, E.; Orozco, L A; Sprouse, G D (November 7, 2005). "Spectroscopy with trapped francium: advances and perspectives for weak interaction studies". Rep. Prog. Phys. 69 (1): 79–118. Bibcode:2006RPPh...69...79G. doi:10.1088/0034-4885/69/1/R02. S2CID 15917603. /wiki/Bibcode_(identifier)
Peterson, I. (May 11, 1996). "Creating, cooling, trapping francium atoms" (PDF). Science News. 149 (19): 294. doi:10.2307/3979560. JSTOR 3979560. Archived from the original (PDF) on July 27, 2020. Retrieved September 11, 2001. https://web.archive.org/web/20200727014700/https://www.sciencenews.org/pages/pdfs/data/1996/149-19/14919-06.pdf
Osika, Yuliya; Meniailava, Darya; Shundalau, Maksim (2024). "Relativistic coupled cluster study on the spectroscopic and radiative properties of the KFr molecule and modeling of the transport properties of potassium–francium dilute gas medium". Journal of Quantitative Spectroscopy and Radiative Transfer. 321. Elsevier BV: 108996. Bibcode:2024JQSRT.32108996O. doi:10.1016/j.jqsrt.2024.108996. ISSN 0022-4073. /wiki/Bibcode_(identifier)
Price, Andy (December 20, 2004). "Francium". Retrieved February 19, 2012. http://www.andyscouse.com/pages/francium.htm
Adloff, Jean-Pierre; Kaufman, George B. (September 25, 2005). Francium (Atomic Number 87), the Last Discovered Natural Element Archived June 4, 2013, at the Wayback Machine . The Chemical Educator 10 (5). Retrieved on March 26, 2007. http://chemeducator.org/sbibs/s0010005/spapers/1050387gk.htm
Adloff, Jean-Pierre; Kaufman, George B. (September 25, 2005). Francium (Atomic Number 87), the Last Discovered Natural Element Archived June 4, 2013, at the Wayback Machine . The Chemical Educator 10 (5). Retrieved on March 26, 2007. http://chemeducator.org/sbibs/s0010005/spapers/1050387gk.htm
Fontani, Marco (September 10, 2005). "The Twilight of the Naturally-Occurring Elements: Moldavium (Ml), Sequanium (Sq) and Dor (Do)". International Conference on the History of Chemistry. Lisbon. pp. 1–8. Archived from the original on February 24, 2006. Retrieved April 8, 2007. /wiki/Marco_Fontani
Van der Krogt, Peter (January 10, 2006). "Francium". Elementymology & Elements Multidict. Retrieved April 8, 2007. http://elements.vanderkrogt.net/element.php?sym=Fr
Fontani, Marco (September 10, 2005). "The Twilight of the Naturally-Occurring Elements: Moldavium (Ml), Sequanium (Sq) and Dor (Do)". International Conference on the History of Chemistry. Lisbon. pp. 1–8. Archived from the original on February 24, 2006. Retrieved April 8, 2007. /wiki/Marco_Fontani
Van der Krogt, Peter (January 10, 2006). "Francium". Elementymology & Elements Multidict. Retrieved April 8, 2007. http://elements.vanderkrogt.net/element.php?sym=Fr
Fontani, Marco (September 10, 2005). "The Twilight of the Naturally-Occurring Elements: Moldavium (Ml), Sequanium (Sq) and Dor (Do)". International Conference on the History of Chemistry. Lisbon. pp. 1–8. Archived from the original on February 24, 2006. Retrieved April 8, 2007. /wiki/Marco_Fontani
Van der Krogt, Peter (January 10, 2006). "Francium". Elementymology & Elements Multidict. Retrieved April 8, 2007. http://elements.vanderkrogt.net/element.php?sym=Fr
"Alabamine & Virginium". Time. February 15, 1932. Archived from the original on September 30, 2007. Retrieved April 1, 2007. https://web.archive.org/web/20070930015028/http://www.time.com/time/magazine/article/0,9171,743159,00.html
MacPherson, H. G. (1934). "An Investigation of the Magneto-Optic Method of Chemical Analysis". Physical Review. 47 (4): 310–315. Bibcode:1935PhRv...47..310M. doi:10.1103/PhysRev.47.310. /wiki/Bibcode_(identifier)
Fontani, Marco (September 10, 2005). "The Twilight of the Naturally-Occurring Elements: Moldavium (Ml), Sequanium (Sq) and Dor (Do)". International Conference on the History of Chemistry. Lisbon. pp. 1–8. Archived from the original on February 24, 2006. Retrieved April 8, 2007. /wiki/Marco_Fontani
Van der Krogt, Peter (January 10, 2006). "Francium". Elementymology & Elements Multidict. Retrieved April 8, 2007. http://elements.vanderkrogt.net/element.php?sym=Fr
Fontani, Marco (September 10, 2005). "The Twilight of the Naturally-Occurring Elements: Moldavium (Ml), Sequanium (Sq) and Dor (Do)". International Conference on the History of Chemistry. Lisbon. pp. 1–8. Archived from the original on February 24, 2006. Retrieved April 8, 2007. /wiki/Marco_Fontani
Van der Krogt, Peter (January 10, 2006). "Francium". Elementymology & Elements Multidict. Retrieved April 8, 2007. http://elements.vanderkrogt.net/element.php?sym=Fr
Adloff, Jean-Pierre; Kaufman, George B. (September 25, 2005). Francium (Atomic Number 87), the Last Discovered Natural Element Archived June 4, 2013, at the Wayback Machine . The Chemical Educator 10 (5). Retrieved on March 26, 2007. http://chemeducator.org/sbibs/s0010005/spapers/1050387gk.htm
Adloff, Jean-Pierre; Kaufman, George B. (September 25, 2005). Francium (Atomic Number 87), the Last Discovered Natural Element Archived June 4, 2013, at the Wayback Machine . The Chemical Educator 10 (5). Retrieved on March 26, 2007. http://chemeducator.org/sbibs/s0010005/spapers/1050387gk.htm
"Francium". McGraw-Hill Encyclopedia of Science & Technology. Vol. 7. McGraw-Hill Professional. 2002. pp. 493–494. ISBN 978-0-07-913665-7. 978-0-07-913665-7
Adloff, Jean-Pierre; Kaufman, George B. (September 25, 2005). Francium (Atomic Number 87), the Last Discovered Natural Element Archived June 4, 2013, at the Wayback Machine . The Chemical Educator 10 (5). Retrieved on March 26, 2007. http://chemeducator.org/sbibs/s0010005/spapers/1050387gk.htm
Adloff, Jean-Pierre; Kaufman, George B. (September 25, 2005). Francium (Atomic Number 87), the Last Discovered Natural Element Archived June 4, 2013, at the Wayback Machine . The Chemical Educator 10 (5). Retrieved on March 26, 2007. http://chemeducator.org/sbibs/s0010005/spapers/1050387gk.htm
Price, Andy (December 20, 2004). "Francium". Retrieved February 19, 2012. http://www.andyscouse.com/pages/francium.htm
Grant, Julius (1969). "Francium". Hackh's Chemical Dictionary. McGraw-Hill. pp. 279–280. ISBN 978-0-07-024067-4. 978-0-07-024067-4
Adloff, Jean-Pierre; Kaufman, George B. (September 25, 2005). Francium (Atomic Number 87), the Last Discovered Natural Element Archived June 4, 2013, at the Wayback Machine . The Chemical Educator 10 (5). Retrieved on March 26, 2007. http://chemeducator.org/sbibs/s0010005/spapers/1050387gk.htm
"History". Francium. State University of New York at Stony Brook. February 20, 2007. Archived from the original on February 3, 1999. Retrieved March 26, 2007. https://archive.today/19990203121919/http://fr.physics.sunysb.edu/francium_news/history.HTM
CRC Handbook of Chemistry and Physics. Vol. 4. CRC. 2006. p. 12. ISBN 978-0-8493-0474-3. 978-0-8493-0474-3
Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. 151–153. ISBN 978-0-19-850341-5. 978-0-19-850341-5
Krebs, Robert E. (July 30, 2006). The History and Use of Our Earth's Chemical Elements: A Reference Guide. Bloomsbury Publishing USA. ISBN 978-0-313-02798-7. 978-0-313-02798-7
"Production of Francium". Francium. State University of New York at Stony Brook. February 20, 2007. Archived from the original on October 12, 2007. Retrieved March 26, 2007. https://archive.today/20071012010344/http://fr.physics.sunysb.edu/francium_news/production.HTM
"Cooling and Trapping". Francium. State University of New York at Stony Brook. February 20, 2007. Archived from the original on November 22, 2007. Retrieved May 1, 2007. https://archive.today/20071122170110/http://fr.physics.sunysb.edu/francium_news/trapping.HTM
"Cooling and Trapping". Francium. State University of New York at Stony Brook. February 20, 2007. Archived from the original on November 22, 2007. Retrieved May 1, 2007. https://archive.today/20071122170110/http://fr.physics.sunysb.edu/francium_news/trapping.HTM
Orozco, Luis A. (2003). "Francium". Chemical and Engineering News. 81 (36): 159. doi:10.1021/cen-v081n036.p159. http://pubs.acs.org/cen/80th/francium.html
Orozco, Luis A. (September 30, 2014). Project Closeout Report: Francium Trapping Facility at TRIUMF (Report). U.S. Department of Energy. doi:10.2172/1214938. https://www.osti.gov/servlets/purl/1214938
Tandecki, M; Zhang, J.; Collister, R.; Aubin, S.; Behr, J. A.; Gomez, E.; Gwinner, G.; Orozco, L. A.; Pearson, M. R. (2013). "Commissioning of the Francium Trapping Facility at TRIUMF". Journal of Instrumentation. 8 (12): 12006. arXiv:1312.3562. Bibcode:2013JInst...8P2006T. doi:10.1088/1748-0221/8/12/P12006. S2CID 15501597. /wiki/ArXiv_(identifier)
"Francium". McGraw-Hill Encyclopedia of Science & Technology. Vol. 7. McGraw-Hill Professional. 2002. pp. 493–494. ISBN 978-0-07-913665-7. 978-0-07-913665-7
Keller, Cornelius; Wolf, Walter; Shani, Jashovam. "Radionuclides, 2. Radioactive Elements and Artificial Radionuclides". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.o22_o15. ISBN 978-3-527-30673-2. 978-3-527-30673-2
Orozco, Luis A. (2003). "Francium". Chemical and Engineering News. 81 (36): 159. doi:10.1021/cen-v081n036.p159. http://pubs.acs.org/cen/80th/francium.html
Price, Andy (December 20, 2004). "Francium". Retrieved February 19, 2012. http://www.andyscouse.com/pages/francium.htm
Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. 151–153. ISBN 978-0-19-850341-5. 978-0-19-850341-5
"Francium". Los Alamos National Laboratory. 2011. Retrieved February 19, 2012. http://periodic.lanl.gov/87.shtml