Nagel, Miriam C. (September 1982). "Frederick Soddy: From alchemy to isotopes". Journal of Chemical Education. 59 (9): 739. Bibcode:1982JChEd..59..739N. doi:10.1021/ed059p739. ISSN 0021-9584. https://pubs.acs.org/doi/abs/10.1021/ed059p739
Kirby, H.W. & Salutsky, Murrell L. (December 1964). The Radiochemistry of Radium (Report). crediting UNT Libraries Government Documents Department. p. 3 – via University of North Texas, UNT Digital Library. Alternate source: https://sgp.fas.org/othergov/doe/lanl/lib-www/books/rc000041.pdf https://digital.library.unt.edu/ark:/67531/metadc1027502/
Giunta, Carmen J. (2017). "ISOTOPES: IDENTIFYING THE BREAKTHROUGH PUBLICATION (1)" (PDF). Bull. Hist. Chem. 42 (2): 103–111. https://acshist.scs.illinois.edu/awards/OPA%20Papers/2017-Giunta.pdf
Looney, William B. (1958). "Effects of Radium in Man". Science. 127 (3299): 630–633. Bibcode:1958Sci...127..630L. doi:10.1126/science.127.3299.630. ISSN 0036-8075. JSTOR 1755774. PMID 13529029. https://www.jstor.org/stable/1755774
Mitchell, S. A. "Is Radium in the Sun?". Popular Astronomy. 21: 321–331. Bibcode:1913PA.....21..321M. https://adsabs.harvard.edu/full/1913PA.....21..321M
Radium emanation = 222Rn, Ra A = 218Po, Ra B = 214Pb, Ra C = 214Bi, Ra C1 = 214Po, Ra C2 = 210Tl, Ra D = 210Pb, Ra E = 210Bi, Ra F = 210Po, and Ra G = 206Pb.[8][9]
Hills, Stephanie (8 May 2013). "First observations of short-lived pear-shaped atomic nuclei". CERN. https://home.cern/about/updates/2013/05/first-observations-short-lived-pear-shaped-atomic-nuclei
mRa – Excited nuclear isomer. /wiki/Nuclear_isomer
Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)
( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Modes of decay:
EC:Electron captureCD:Cluster decayIT:Isomeric transition /wiki/Electron_capture
Bold symbol as daughter – Daughter product is stable.
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
( ) spin value – Indicates spin with weak assignment arguments.
# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
Intermediate decay product of 237Np /wiki/Neptunium-237
Lightest known nuclide to undergo cluster decay /wiki/Cluster_decay
Used for treating bone cancer /wiki/Radium-223#Medical_use
Intermediate decay product of 235U /wiki/Decay_product
Intermediate decay product of 232Th /wiki/Thorium-232
Intermediate decay product of 237Np /wiki/Neptunium-237
Liang, C. F.; Paris, P.; Sheline, R. K. (2000-09-19). "α decay of 225Ra". Physical Review C. 62 (4). American Physical Society (APS): 047303. Bibcode:2000PhRvC..62d7303L. doi:10.1103/physrevc.62.047303. ISSN 0556-2813. /wiki/Bibcode_(identifier)
Source of element's name
Theoretically capable of β−β− decay to 226Th
Intermediate decay product of 238U /wiki/Uranium-238
Intermediate decay product of 232Th /wiki/Thorium-232
Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here. /wiki/Polonium
Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor. /wiki/Thermal_neutron
Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4."The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 [years]. No growth of Cf248 was detected, and a lower limit for the β− half-life can be set at about 104 [years]. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 [years]." /wiki/Bibcode_(identifier)
This is the heaviest nuclide with a half-life of at least four years before the "sea of instability". /wiki/Sea_of_instability
Excluding those "classically stable" nuclides with half-lives significantly in excess of 232Th; e.g., while 113mCd has a half-life of only fourteen years, that of 113Cd is eight quadrillion years. /wiki/Primordial_nuclide