Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than 30 minutes except 101Pd (half-life: 8.47 hours), 109Pd (half-life: 13.7 hours), and 112Pd (half-life: 21 hours).
The primary decay mode before the most abundant stable isotope, 106Pd, is electron capture and the primary mode after is beta decay. The primary decay product before 106Pd is rhodium and the primary product after is silver.
Radiogenic 107Ag is a decay product of 107Pd and was first discovered in the Santa Clara meteorite of 1978. The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the Solar System, must reflect the presence of short-lived nuclides in the early Solar System.
List of isotopes
Nuclide3 | Z | N | Isotopic mass (Da)456 | Half-life78 | Decaymode910 | Daughterisotope11 | Spin andparity121314 | Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy15 | Normal proportion16 | Range of variation | |||||||||||||||||
90Pd | 46 | 44 | 89.95737(43)# | 10# ms[>400 ns] | β+? | 90Rh | 0+ | ||||||||||||
β+, p? | 89Ru | ||||||||||||||||||
2p? | 88Ru | ||||||||||||||||||
91Pd | 46 | 45 | 90.95044(45)# | 32(3) ms | β+ (96.9%) | 91Rh | 7/2+# | ||||||||||||
β+, p (3.1%) | 90Ru | ||||||||||||||||||
92Pd | 46 | 46 | 91.94119(37) | 1.06(3) s | β+ (98.4%) | 92Rh | 0+ | ||||||||||||
β+, p (1.6%) | 91Ru | ||||||||||||||||||
93Pd | 46 | 47 | 92.93668(40) | 1.17(2) s | β+ (92.6%) | 93Rh | (9/2+) | ||||||||||||
β+, p (7.4%) | 92Ru | ||||||||||||||||||
94Pd | 46 | 48 | 93.9290363(46) | 9.1(3) s | β+ (>99.87%) | 94Rh | 0+ | ||||||||||||
β+, p (<0.13%) | 93Ru | ||||||||||||||||||
94m1Pd | 4883.1(4) keV | 515(1) ns | IT | 94Pd | (14+) | ||||||||||||||
94m2Pd | 7209.8(8) keV | 206(18) ns | IT | 94Pd | (19−) | ||||||||||||||
95Pd | 46 | 49 | 94.9248885(33) | 7.4(4) s | β+ (99.77%) | 95Rh | 9/2+# | ||||||||||||
β+, p (0.23%) | 94Ru | ||||||||||||||||||
95mPd | 1875.13(14) keV | 13.3(2) s | β+ (88%) | 95Rh | (21/2+) | ||||||||||||||
IT (11%) | 95Pd | ||||||||||||||||||
β+, p (0.71%) | 94Ru | ||||||||||||||||||
96Pd | 46 | 50 | 95.9182137(45) | 122(2) s | β+ | 96Rh | 0+ | ||||||||||||
96mPd | 2530.57(23) keV | 1.804(7) μs | IT | 96Pd | 8+# | ||||||||||||||
97Pd | 46 | 51 | 96.9164720(52) | 3.10(9) min | β+ | 97Rh | 5/2+# | ||||||||||||
98Pd | 46 | 52 | 97.9126983(51) | 17.7(4) min | β+ | 98Rh | 0+ | ||||||||||||
99Pd | 46 | 53 | 98.9117731(55) | 21.4(2) min | β+ | 99Rh | (5/2)+ | ||||||||||||
100Pd | 46 | 54 | 99.908520(19) | 3.63(9) d | EC | 100Rh | 0+ | ||||||||||||
101Pd | 46 | 55 | 100.9082848(49) | 8.47(6) h | β+ | 101Rh | 5/2+ | ||||||||||||
102Pd | 46 | 56 | 101.90563229(45) | Observationally Stable17 | 0+ | 0.0102(1) | |||||||||||||
103Pd | 46 | 57 | 102.90611107(94) | 16.991(19) d | EC | 103Rh | 5/2+ | ||||||||||||
104Pd | 46 | 58 | 103.9040304(14) | Stable | 0+ | 0.1114(8) | |||||||||||||
105Pd18 | 46 | 59 | 104.9050795(12) | Stable | 5/2+ | 0.2233(8) | |||||||||||||
105mPd | 489.1(3) keV | 35.5(5) μs | IT | 105Pd | 11/2− | ||||||||||||||
106Pd19 | 46 | 60 | 105.9034803(12) | Stable | 0+ | 0.2733(3) | |||||||||||||
107Pd20 | 46 | 61 | 106.9051281(13) | 6.5(3)×106 y | β− | 107Ag | 5/2+ | trace21 | |||||||||||
107m1Pd | 115.74(12) keV | 0.85(10) μs | IT | 107Pd | 1/2+ | ||||||||||||||
107m2Pd | 214.6(3) keV | 21.3(5) s | IT | 107Pd | 11/2− | ||||||||||||||
108Pd22 | 46 | 62 | 107.9038918(12) | Stable | 0+ | 0.2646(9) | |||||||||||||
109Pd23 | 46 | 63 | 108.9059506(12) | 13.59(12) h | β− | 109Ag | 5/2+ | ||||||||||||
109m1Pd | 113.4000(14) keV | 380(50) ns | IT | 109Pd | 1/2+ | ||||||||||||||
109m2Pd | 188.9903(10) keV | 4.703(9) min | IT | 109Pd | 11/2− | ||||||||||||||
110Pd24 | 46 | 64 | 109.90517288(66) | Observationally Stable25 | 0+ | 0.1172(9) | |||||||||||||
111Pd | 46 | 65 | 110.90769036(79) | 23.56(9) min | β− | 111Ag | 5/2+ | ||||||||||||
111mPd | 172.18(8) keV | 5.563(13) h | IT (76.8%) | 111Pd | 11/2− | ||||||||||||||
β− (23.2%) | 111Ag | ||||||||||||||||||
112Pd | 46 | 66 | 111.9073306(70) | 21.04(17) h | β− | 112Ag | 0+ | ||||||||||||
113Pd | 46 | 67 | 112.9102619(75) | 93(5) s | β− | 113Ag | (5/2+) | ||||||||||||
113mPd | 81.1(3) keV | 0.3(1) s | IT | 113Pd | (9/2−) | ||||||||||||||
114Pd | 46 | 68 | 113.9103694(75) | 2.42(6) min | β− | 114Ag | 0+ | ||||||||||||
115Pd | 46 | 69 | 114.9136650(19)26 | 25(2) s | β− | 115Ag | (1/2)+ | ||||||||||||
115mPd | 86.8(29) keV27 | 50(3) s | β− (92.0%) | 115Ag | (7/2−) | ||||||||||||||
IT (8.0%) | 115Pd | ||||||||||||||||||
116Pd | 46 | 70 | 115.9142979(77) | 11.8(4) s | β− | 116Ag | 0+ | ||||||||||||
117Pd | 46 | 71 | 116.9179556(78) | 4.3(3) s | β− | 117Ag | (3/2+) | ||||||||||||
117mPd | 203.3(3) keV | 19.1(7) ms | IT | 117Pd | (9/2−) | ||||||||||||||
118Pd | 46 | 72 | 117.9190673(27) | 1.9(1) s | β− | 118Ag | 0+ | ||||||||||||
119Pd | 46 | 73 | 118.9231238(45)28 | 0.88(2) s | β− | 119Ag | 1/2+, 3/2+29 | ||||||||||||
β−, n? | 118Ag | ||||||||||||||||||
119mPd30 | 199.1(30) keV | 0.85(1) s | IT | 119Pd | (11/2−)31 | ||||||||||||||
120Pd | 46 | 74 | 119.9245517(25) | 492(33) ms | β− (>99.3%) | 120Ag | 0+ | ||||||||||||
β−, n (<0.7%) | 119Ag | ||||||||||||||||||
121Pd | 46 | 75 | 120.9289513(40)32 | 290(1) ms | β− (>99.2%) | 121Ag | 3/2+# | ||||||||||||
β−, n (<0.8%) | 120Ag | ||||||||||||||||||
121m1Pd | 135.5(5) keV | 460(90) ns | IT | 121Pd | 7/2+# | ||||||||||||||
121m2Pd | 160(14) keV | 460(90) ns | IT | 121Pd | 11/2−# | ||||||||||||||
122Pd | 46 | 76 | 121.930632(21) | 193(5) ms | β− | 122Ag | 0+ | ||||||||||||
β−, n (<2.5%) | 121Ag | ||||||||||||||||||
123Pd | 46 | 77 | 122.93513(85) | 108(1) ms | β− (90%) | 123Ag | 3/2+# | ||||||||||||
β−, n (10%) | 122Ag | ||||||||||||||||||
123mPd | 100(50)# keV | 100# ms | β− | 123Ag | 11/2−# | ||||||||||||||
IT? | 123Pd | ||||||||||||||||||
124Pd | 46 | 78 | 123.93731(32)# | 88(15) ms | β− (83%) | 124Ag | 0+ | ||||||||||||
β−, n (17%) | 123Ag | ||||||||||||||||||
124mPd | 1000(800)# keV | >20 μs | IT | 124Pd | 11/2−# | ||||||||||||||
125Pd | 46 | 79 | 124.94207(43)# | 60(6) ms | β− (88%) | 125Ag | 3/2+# | ||||||||||||
β−, n (12%) | 124Ag | ||||||||||||||||||
125m1Pd | 100(50)# keV | 50# ms | β− | 125Ag | 11/2−# | ||||||||||||||
IT? | 125Pd | ||||||||||||||||||
125m2Pd | 1805.23(18) keV | 144(4) ns | IT | 125Pd | (23/2+) | ||||||||||||||
126Pd | 46 | 80 | 125.94440(43)# | 48.6(8) ms | β− (78%) | 126Ag | 0+ | ||||||||||||
β−, n (22%) | 125Ag | ||||||||||||||||||
126m1Pd | 2023.5(7) keV | 330(40) ns | IT | 126Pd | (5−) | ||||||||||||||
126m2Pd | 2109.7(9) keV | 440(30) ns | IT | 126Pd | (7−) | ||||||||||||||
126m3Pd | 2406.0(10) keV | 23.0(8) ms | β− (72%) | 126Ag | (10+) | ||||||||||||||
IT (28%) | 126Pd | ||||||||||||||||||
127Pd | 46 | 81 | 126.94931(54)# | 38(2) ms | β− (>81%) | 127Ag | 11/2−# | ||||||||||||
β−, n (<19%) | 126Ag | ||||||||||||||||||
β−, 2n? | 125Ag | ||||||||||||||||||
127mPd | 1717.91(23) keV | 39(6) μs | IT | 127Pd | (19/2+) | ||||||||||||||
128Pd | 46 | 82 | 127.95235(54)# | 35(3) ms | β− | 128Ag | 0+ | ||||||||||||
β−, n? | 127Ag | ||||||||||||||||||
128mPd | 2151.0(10) keV | 5.8(8) μs | IT | 128Pd | (8+) | ||||||||||||||
129Pd | 46 | 83 | 128.95933(64)# | 31(7) ms | β− | 129Ag | 7/2−# | ||||||||||||
β−, n? | 128Ag | ||||||||||||||||||
β−, 2n? | 127Ag | ||||||||||||||||||
130Pd | 46 | 84 | 129.96486(32)# | 27# ms[>550 ns] | β− | 130Ag | 0+ | ||||||||||||
β−, n? | 129Ag | ||||||||||||||||||
β−, 2n? | 128Ag | ||||||||||||||||||
131Pd | 46 | 85 | 130.97237(32)# | 20# ms[>550 ns] | β− | 131Ag | 7/2−# | ||||||||||||
β−, n? | 130Ag | ||||||||||||||||||
β−, 2n? | 129Ag | ||||||||||||||||||
This table header & footer:
|
Palladium-103
Palladium-103 is a radioisotope of the element palladium that has uses in brachytherapy for prostate cancer and uveal melanoma. Palladium-103 may be created from palladium-102 or from rhodium-103 using a cyclotron. Palladium-103 has a half-life of 16.9933 days and decays by electron capture to an excited state of rhodium-103, which undergoes internal conversion to eject an electron. The resulting electron vacancy leads to emission of characteristic X-rays with 20–23 keV of energy.
Palladium-107
Long-lived fission products- v
- t
- e
Nuclide | t1⁄2 | Yield | Q34 | βγ |
---|---|---|---|---|
(Ma) | (%)35 | (keV) | ||
99Tc | 0.211 | 6.1385 | 294 | β |
126Sn | 0.230 | 0.1084 | 405036 | βγ |
79Se | 0.327 | 0.0447 | 151 | β |
135Cs | 1.33 | 6.911037 | 269 | β |
93Zr | 1.53 | 5.4575 | 91 | βγ |
107Pd | 6.5 | 1.2499 | 33 | β |
129I | 16.14 | 0.8410 | 194 | βγ |
Palladium-107 is the second-longest lived (half-life of 6.5 million years38) and least radioactive (decay energy only 33 keV, specific activity 5×10−5 Ci/g) of the 7 long-lived fission products. It undergoes pure beta decay (without gamma radiation) to 107Ag, which is stable.
Its yield from thermal neutron fission of uranium-235 is 0.14% per fission,39 only 1/4 that of iodine-129, and only 1/40 those of 99Tc, 93Zr, and 135Cs. Yield from 233U is slightly lower, but yield from 239Pu is much higher, 3.2%.40 Fast fission or fission of some heavier actinides[which?] will produce palladium-107 at higher yields.
One source41 estimates that palladium produced from fission contains the isotopes 104Pd (16.9%),105Pd (29.3%), 106Pd (21.3%), 107Pd (17%), 108Pd (11.7%) and 110Pd (3.8%). According to another source, the proportion of 107Pd is 9.2% for palladium from thermal neutron fission of 235U, 11.8% for 233U, and 20.4% for 239Pu (and the 239Pu yield of palladium is about 10 times that of 235U).
Because of this dilution and because 105Pd has 11 times the neutron absorption cross section, 107Pd is not amenable to disposal by nuclear transmutation. However, as a noble metal, palladium is not as mobile in the environment as iodine or technetium.
- Patent application for Palladium-103 implantable radiation-delivery device[permanent dead link] (accessed 12/7/05)
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
References
W. R. Kelly; G. J. Wasserburg (1978). "Evidence for the existence of 107Pd in the early solar system". Geophysical Research Letters. 5 (12): 1079–1082. Bibcode:1978GeoRL...5.1079K. doi:10.1029/GL005i012p01079. https://authors.library.caltech.edu/43037/ ↩
J. H. Chen; G. J. Wasserburg (1990). "The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets". Geochimica et Cosmochimica Acta. 54 (6): 1729–1743. Bibcode:1990GeCoA..54.1729C. doi:10.1016/0016-7037(90)90404-9. /wiki/Geochimica_et_Cosmochimica_Acta ↩
mPd – Excited nuclear isomer. /wiki/Nuclear_isomer ↩
Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier) ↩
( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits. ↩
# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS). ↩
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf ↩
# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN). ↩
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf ↩
Modes of decay: EC:Electron captureIT:Isomeric transitionp:Proton emission /wiki/Electron_capture ↩
Bold symbol as daughter – Daughter product is stable. ↩
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf ↩
( ) spin value – Indicates spin with weak assignment arguments. ↩
# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN). ↩
# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN). ↩
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf ↩
Believed to decay by β+β+ to 102Ru with a half-life over 7.6×1018 y ↩
Fission product /wiki/Fission_product ↩
Fission product /wiki/Fission_product ↩
Long-lived fission product /wiki/Long-lived_fission_product ↩
Cosmogenic nuclide, also found as nuclear contamination /wiki/Cosmogenic ↩
Fission product /wiki/Fission_product ↩
Fission product /wiki/Fission_product ↩
Fission product /wiki/Fission_product ↩
Believed to decay by β−β− to 110Cd with a half-life over 2.9×1020 years ↩
Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19 ↩
Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19 ↩
Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19 ↩
Kurpeta, J.; Abramuk, A.; Rząca-Urban, T.; Urban, W.; Canete, L.; Eronen, T.; Geldhof, S.; Gierlik, M.; Greene, J. P.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Simpson, G. S.; Smith, A. G.; Vilén, M. (14 March 2022). "β - and γ -spectroscopy study of Pd 119 and Ag 119". Physical Review C. 105 (3). doi:10.1103/PhysRevC.105.034316. /wiki/Doi_(identifier) ↩
Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19 ↩
Kurpeta, J.; Abramuk, A.; Rząca-Urban, T.; Urban, W.; Canete, L.; Eronen, T.; Geldhof, S.; Gierlik, M.; Greene, J. P.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Simpson, G. S.; Smith, A. G.; Vilén, M. (14 March 2022). "β - and γ -spectroscopy study of Pd 119 and Ag 119". Physical Review C. 105 (3). doi:10.1103/PhysRevC.105.034316. /wiki/Doi_(identifier) ↩
Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19 ↩
Winter, Mark. "Isotopes of palladium". WebElements. The University of Sheffield and WebElements Ltd, UK. Retrieved 4 March 2013. http://www.webelements.com/palladium/isotopes.html ↩
Decay energy is split among β, neutrino, and γ if any. /wiki/Beta_particle ↩
Per 65 thermal neutron fissions of 235U and 35 of 239Pu. /wiki/Uranium-235 ↩
Has decay energy 380 keV, but its decay product 126Sb has decay energy 3.67 MeV. ↩
Lower in thermal reactors because 135Xe, its predecessor, readily absorbs neutrons. /wiki/Xenon-135 ↩
Winter, Mark. "Isotopes of palladium". WebElements. The University of Sheffield and WebElements Ltd, UK. Retrieved 4 March 2013. http://www.webelements.com/palladium/isotopes.html ↩
Weller, A.; Ramaker, T.; Stäger, F.; Blenke, T.; Raiwa, M.; Chyzhevskyi, I.; Kirieiev, S.; Dubchak, S.; Steinhauser, G. (2021). "Detection of the Fission Product Palladium-107 in a Pond Sediment Sample from Chernobyl". Environmental Science & Technology Letters. 8 (8): 656–661. Bibcode:2021EnSTL...8..656W. doi:10.1021/acs.estlett.1c00420. https://www.researchgate.net/publication/352972522 ↩
Weller, A.; Ramaker, T.; Stäger, F.; Blenke, T.; Raiwa, M.; Chyzhevskyi, I.; Kirieiev, S.; Dubchak, S.; Steinhauser, G. (2021). "Detection of the Fission Product Palladium-107 in a Pond Sediment Sample from Chernobyl". Environmental Science & Technology Letters. 8 (8): 656–661. Bibcode:2021EnSTL...8..656W. doi:10.1021/acs.estlett.1c00420. https://www.researchgate.net/publication/352972522 ↩
R. P. Bush (1991). "Recovery of Platinum Group Metals from High Level Radioactive Waste" (PDF). Platinum Metals Review. 35 (4): 202–208. doi:10.1595/003214091X354202208. Archived from the original (PDF) on 2015-09-24. Retrieved 2011-04-02. https://web.archive.org/web/20150924074421/http://www.platinummetalsreview.com/pdf/pmr-v35-i4-202-208.pdf ↩