Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of palladium

Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than 30 minutes except 101Pd (half-life: 8.47 hours), 109Pd (half-life: 13.7 hours), and 112Pd (half-life: 21 hours).

The primary decay mode before the most abundant stable isotope, 106Pd, is electron capture and the primary mode after is beta decay. The primary decay product before 106Pd is rhodium and the primary product after is silver.

Radiogenic 107Ag is a decay product of 107Pd and was first discovered in the Santa Clara meteorite of 1978. The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the Solar System, must reflect the presence of short-lived nuclides in the early Solar System.

We don't have any images related to Isotopes of palladium yet.
We don't have any YouTube videos related to Isotopes of palladium yet.
We don't have any PDF documents related to Isotopes of palladium yet.
We don't have any Books related to Isotopes of palladium yet.
We don't have any archived web articles related to Isotopes of palladium yet.

List of isotopes

Nuclide3ZNIsotopic mass (Da)456Half-life78Decaymode910Daughterisotope11Spin andparity121314Natural abundance (mole fraction)
Excitation energy15Normal proportion16Range of variation
90Pd464489.95737(43)#10# ms[>400 ns]β+?90Rh0+
β+, p?89Ru
2p?88Ru
91Pd464590.95044(45)#32(3) msβ+ (96.9%)91Rh7/2+#
β+, p (3.1%)90Ru
92Pd464691.94119(37)1.06(3) sβ+ (98.4%)92Rh0+
β+, p (1.6%)91Ru
93Pd464792.93668(40)1.17(2) sβ+ (92.6%)93Rh(9/2+)
β+, p (7.4%)92Ru
94Pd464893.9290363(46)9.1(3) sβ+ (>99.87%)94Rh0+
β+, p (<0.13%)93Ru
94m1Pd4883.1(4) keV515(1) nsIT94Pd(14+)
94m2Pd7209.8(8) keV206(18) nsIT94Pd(19−)
95Pd464994.9248885(33)7.4(4) sβ+ (99.77%)95Rh9/2+#
β+, p (0.23%)94Ru
95mPd1875.13(14) keV13.3(2) sβ+ (88%)95Rh(21/2+)
IT (11%)95Pd
β+, p (0.71%)94Ru
96Pd465095.9182137(45)122(2) sβ+96Rh0+
96mPd2530.57(23) keV1.804(7) μsIT96Pd8+#
97Pd465196.9164720(52)3.10(9) minβ+97Rh5/2+#
98Pd465297.9126983(51)17.7(4) minβ+98Rh0+
99Pd465398.9117731(55)21.4(2) minβ+99Rh(5/2)+
100Pd465499.908520(19)3.63(9) dEC100Rh0+
101Pd4655100.9082848(49)8.47(6) hβ+101Rh5/2+
102Pd4656101.90563229(45)Observationally Stable170+0.0102(1)
103Pd4657102.90611107(94)16.991(19) dEC103Rh5/2+
104Pd4658103.9040304(14)Stable0+0.1114(8)
105Pd184659104.9050795(12)Stable5/2+0.2233(8)
105mPd489.1(3) keV35.5(5) μsIT105Pd11/2−
106Pd194660105.9034803(12)Stable0+0.2733(3)
107Pd204661106.9051281(13)6.5(3)×106 yβ−107Ag5/2+trace21
107m1Pd115.74(12) keV0.85(10) μsIT107Pd1/2+
107m2Pd214.6(3) keV21.3(5) sIT107Pd11/2−
108Pd224662107.9038918(12)Stable0+0.2646(9)
109Pd234663108.9059506(12)13.59(12) hβ−109Ag5/2+
109m1Pd113.4000(14) keV380(50) nsIT109Pd1/2+
109m2Pd188.9903(10) keV4.703(9) minIT109Pd11/2−
110Pd244664109.90517288(66)Observationally Stable250+0.1172(9)
111Pd4665110.90769036(79)23.56(9) minβ−111Ag5/2+
111mPd172.18(8) keV5.563(13) hIT (76.8%)111Pd11/2−
β− (23.2%)111Ag
112Pd4666111.9073306(70)21.04(17) hβ−112Ag0+
113Pd4667112.9102619(75)93(5) sβ−113Ag(5/2+)
113mPd81.1(3) keV0.3(1) sIT113Pd(9/2−)
114Pd4668113.9103694(75)2.42(6) minβ−114Ag0+
115Pd4669114.9136650(19)2625(2) sβ−115Ag(1/2)+
115mPd86.8(29) keV2750(3) sβ− (92.0%)115Ag(7/2−)
IT (8.0%)115Pd
116Pd4670115.9142979(77)11.8(4) sβ−116Ag0+
117Pd4671116.9179556(78)4.3(3) sβ−117Ag(3/2+)
117mPd203.3(3) keV19.1(7) msIT117Pd(9/2−)
118Pd4672117.9190673(27)1.9(1) sβ−118Ag0+
119Pd4673118.9231238(45)280.88(2) sβ−119Ag1/2+, 3/2+29
β−, n?118Ag
119mPd30199.1(30) keV0.85(1) sIT119Pd(11/2−)31
120Pd4674119.9245517(25)492(33) msβ− (>99.3%)120Ag0+
β−, n (<0.7%)119Ag
121Pd4675120.9289513(40)32290(1) msβ− (>99.2%)121Ag3/2+#
β−, n (<0.8%)120Ag
121m1Pd135.5(5) keV460(90) nsIT121Pd7/2+#
121m2Pd160(14) keV460(90) nsIT121Pd11/2−#
122Pd4676121.930632(21)193(5) msβ−122Ag0+
β−, n (<2.5%)121Ag
123Pd4677122.93513(85)108(1) msβ− (90%)123Ag3/2+#
β−, n (10%)122Ag
123mPd100(50)# keV100# msβ−123Ag11/2−#
IT?123Pd
124Pd4678123.93731(32)#88(15) msβ− (83%)124Ag0+
β−, n (17%)123Ag
124mPd1000(800)# keV>20 μsIT124Pd11/2−#
125Pd4679124.94207(43)#60(6) msβ− (88%)125Ag3/2+#
β−, n (12%)124Ag
125m1Pd100(50)# keV50# msβ−125Ag11/2−#
IT?125Pd
125m2Pd1805.23(18) keV144(4) nsIT125Pd(23/2+)
126Pd4680125.94440(43)#48.6(8) msβ− (78%)126Ag0+
β−, n (22%)125Ag
126m1Pd2023.5(7) keV330(40) nsIT126Pd(5−)
126m2Pd2109.7(9) keV440(30) nsIT126Pd(7−)
126m3Pd2406.0(10) keV23.0(8) msβ− (72%)126Ag(10+)
IT (28%)126Pd
127Pd4681126.94931(54)#38(2) msβ− (>81%)127Ag11/2−#
β−, n (<19%)126Ag
β−, 2n?125Ag
127mPd1717.91(23) keV39(6) μsIT127Pd(19/2+)
128Pd4682127.95235(54)#35(3) msβ−128Ag0+
β−, n?127Ag
128mPd2151.0(10) keV5.8(8) μsIT128Pd(8+)
129Pd4683128.95933(64)#31(7) msβ−129Ag7/2−#
β−, n?128Ag
β−, 2n?127Ag
130Pd4684129.96486(32)#27# ms[>550 ns]β−130Ag0+
β−, n?129Ag
β−, 2n?128Ag
131Pd4685130.97237(32)#20# ms[>550 ns]β−131Ag7/2−#
β−, n?130Ag
β−, 2n?129Ag
This table header & footer:
  • view

Palladium-103

Palladium-103 is a radioisotope of the element palladium that has uses in brachytherapy for prostate cancer and uveal melanoma. Palladium-103 may be created from palladium-102 or from rhodium-103 using a cyclotron. Palladium-103 has a half-life of 16.9933 days and decays by electron capture to an excited state of rhodium-103, which undergoes internal conversion to eject an electron. The resulting electron vacancy leads to emission of characteristic X-rays with 20–23 keV of energy.

Palladium-107

Long-lived fission products
  • v
  • t
  • e
Nuclidet1⁄2YieldQ34βγ
(Ma)(%)35(keV)
99Tc0.2116.1385294β
126Sn0.2300.1084405036βγ
79Se0.3270.0447151β
135Cs1.33 6.911037269β
93Zr1.53 5.457591βγ
107Pd6.5  1.249933β
129I16.14  0.8410194βγ

Palladium-107 is the second-longest lived (half-life of 6.5 million years38) and least radioactive (decay energy only 33 keV, specific activity 5×10−5 Ci/g) of the 7 long-lived fission products. It undergoes pure beta decay (without gamma radiation) to 107Ag, which is stable.

Its yield from thermal neutron fission of uranium-235 is 0.14% per fission,39 only 1/4 that of iodine-129, and only 1/40 those of 99Tc, 93Zr, and 135Cs. Yield from 233U is slightly lower, but yield from 239Pu is much higher, 3.2%.40 Fast fission or fission of some heavier actinides[which?] will produce palladium-107 at higher yields.

One source41 estimates that palladium produced from fission contains the isotopes 104Pd (16.9%),105Pd (29.3%), 106Pd (21.3%), 107Pd (17%), 108Pd (11.7%) and 110Pd (3.8%). According to another source, the proportion of 107Pd is 9.2% for palladium from thermal neutron fission of 235U, 11.8% for 233U, and 20.4% for 239Pu (and the 239Pu yield of palladium is about 10 times that of 235U).

Because of this dilution and because 105Pd has 11 times the neutron absorption cross section, 107Pd is not amenable to disposal by nuclear transmutation. However, as a noble metal, palladium is not as mobile in the environment as iodine or technetium.

References

  1. W. R. Kelly; G. J. Wasserburg (1978). "Evidence for the existence of 107Pd in the early solar system". Geophysical Research Letters. 5 (12): 1079–1082. Bibcode:1978GeoRL...5.1079K. doi:10.1029/GL005i012p01079. https://authors.library.caltech.edu/43037/

  2. J. H. Chen; G. J. Wasserburg (1990). "The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets". Geochimica et Cosmochimica Acta. 54 (6): 1729–1743. Bibcode:1990GeCoA..54.1729C. doi:10.1016/0016-7037(90)90404-9. /wiki/Geochimica_et_Cosmochimica_Acta

  3. mPd – Excited nuclear isomer. /wiki/Nuclear_isomer

  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  5. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  6. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  7. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  10. Modes of decay: EC:Electron captureIT:Isomeric transitionp:Proton emission /wiki/Electron_capture

  11. Bold symbol as daughter – Daughter product is stable.

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. ( ) spin value – Indicates spin with weak assignment arguments.

  14. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  15. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  16. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  17. Believed to decay by β+β+ to 102Ru with a half-life over 7.6×1018 y

  18. Fission product /wiki/Fission_product

  19. Fission product /wiki/Fission_product

  20. Long-lived fission product /wiki/Long-lived_fission_product

  21. Cosmogenic nuclide, also found as nuclear contamination /wiki/Cosmogenic

  22. Fission product /wiki/Fission_product

  23. Fission product /wiki/Fission_product

  24. Fission product /wiki/Fission_product

  25. Believed to decay by β−β− to 110Cd with a half-life over 2.9×1020 years

  26. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  27. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  28. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  29. Kurpeta, J.; Abramuk, A.; Rząca-Urban, T.; Urban, W.; Canete, L.; Eronen, T.; Geldhof, S.; Gierlik, M.; Greene, J. P.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Simpson, G. S.; Smith, A. G.; Vilén, M. (14 March 2022). "β - and γ -spectroscopy study of Pd 119 and Ag 119". Physical Review C. 105 (3). doi:10.1103/PhysRevC.105.034316. /wiki/Doi_(identifier)

  30. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  31. Kurpeta, J.; Abramuk, A.; Rząca-Urban, T.; Urban, W.; Canete, L.; Eronen, T.; Geldhof, S.; Gierlik, M.; Greene, J. P.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Simpson, G. S.; Smith, A. G.; Vilén, M. (14 March 2022). "β - and γ -spectroscopy study of Pd 119 and Ag 119". Physical Review C. 105 (3). doi:10.1103/PhysRevC.105.034316. /wiki/Doi_(identifier)

  32. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  33. Winter, Mark. "Isotopes of palladium". WebElements. The University of Sheffield and WebElements Ltd, UK. Retrieved 4 March 2013. http://www.webelements.com/palladium/isotopes.html

  34. Decay energy is split among β, neutrino, and γ if any. /wiki/Beta_particle

  35. Per 65 thermal neutron fissions of 235U and 35 of 239Pu. /wiki/Uranium-235

  36. Has decay energy 380 keV, but its decay product 126Sb has decay energy 3.67 MeV.

  37. Lower in thermal reactors because 135Xe, its predecessor, readily absorbs neutrons. /wiki/Xenon-135

  38. Winter, Mark. "Isotopes of palladium". WebElements. The University of Sheffield and WebElements Ltd, UK. Retrieved 4 March 2013. http://www.webelements.com/palladium/isotopes.html

  39. Weller, A.; Ramaker, T.; Stäger, F.; Blenke, T.; Raiwa, M.; Chyzhevskyi, I.; Kirieiev, S.; Dubchak, S.; Steinhauser, G. (2021). "Detection of the Fission Product Palladium-107 in a Pond Sediment Sample from Chernobyl". Environmental Science & Technology Letters. 8 (8): 656–661. Bibcode:2021EnSTL...8..656W. doi:10.1021/acs.estlett.1c00420. https://www.researchgate.net/publication/352972522

  40. Weller, A.; Ramaker, T.; Stäger, F.; Blenke, T.; Raiwa, M.; Chyzhevskyi, I.; Kirieiev, S.; Dubchak, S.; Steinhauser, G. (2021). "Detection of the Fission Product Palladium-107 in a Pond Sediment Sample from Chernobyl". Environmental Science & Technology Letters. 8 (8): 656–661. Bibcode:2021EnSTL...8..656W. doi:10.1021/acs.estlett.1c00420. https://www.researchgate.net/publication/352972522

  41. R. P. Bush (1991). "Recovery of Platinum Group Metals from High Level Radioactive Waste" (PDF). Platinum Metals Review. 35 (4): 202–208. doi:10.1595/003214091X354202208. Archived from the original (PDF) on 2015-09-24. Retrieved 2011-04-02. https://web.archive.org/web/20150924074421/http://www.platinummetalsreview.com/pdf/pmr-v35-i4-202-208.pdf