There are various types of hydrogen microsensors, which use different mechanisms to detect the gas. Palladium is used in many of these, because it selectively absorbs hydrogen gas and forms the compound palladium hydride. Palladium-based sensors have a strong temperature dependence which makes their response time too large at very low temperatures. Palladium sensors have to be protected against carbon monoxide, sulfur dioxide and hydrogen sulfide.
Qu, Xi Dong (2005). "MOS Capacitor Sensor Array for Hydrogen Gas Measurement" (PDF). Simon Fraser University. Archived from the original (PDF) on 2011-07-06. Retrieved 2008-10-21. https://web.archive.org/web/20110706203529/http://ir.lib.sfu.ca/retrieve/2097/etd1726.pdf
Pitts, Ronald; Ping Liu; Se-Hee Lee; Ed Tracy. "Interfacial Stability Of Thin Film Hydrogen Sensors" (PDF). National Renewable Energy Laboratory. Retrieved 2008-10-21. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/30535bb.pdf
NREL-Hydrogen Sensor Testing oct 2008 Archived 2009-05-06 at the Wayback Machine http://www.nrel.gov/hydrogen/pdfs/42987.pdf
Swager, Timothy M.; Pioch, Thomas N.; Feng, Haosheng; Bergman, Harrison M.; Luo, Shao-Xiong Lennon; Valenza, John J. (2024-05-24). "Critical Sensing Modalities for Hydrogen: Technical Needs and Status of the Field to Support a Changing Energy Landscape". ACS Sensors. 9 (5): 2205–2227. doi:10.1021/acssensors.4c00251. ISSN 2379-3694. PMID 38738834. https://pubs.acs.org/doi/10.1021/acssensors.4c00251
"Hydrogen sensors are faster, more sensitive". Innovations Report. 2005-05-31. Retrieved 2008-10-21. http://www.innovations-report.com/html/reports/physics_astronomy/report-44815.html
Guemes, J. Alfredo; Pintado, J. M.; Frovel, M.; Olmo, E.; Obst, A. (May 2005). Comparison of three types of fibre optic hydrogen sensors within the frame of CryoFOS project. 17th International Conference on Optical Fibre Sensors. Vol. 5855. p. 1000. Bibcode:2005SPIE.5855.1000G. doi:10.1117/12.623731. S2CID 108642357. /wiki/Bibcode_(identifier)
Alverio, Gustavo. "A Nanoparticle-based Hydrogen Microsensor". University of Central Florida. Archived from the original on 2008-12-04. Retrieved 2008-10-21. https://web.archive.org/web/20081204162842/http://nsfreunano.research.ucf.edu/YearBook/Titans/2004/alvero.html
Baselt, D.R. (2003). "Design and performance of a microcantilever-based hydrogen sensor". Sensors and Actuators B: Chemical. 88 (2): 120–131. Bibcode:2003SeAcB..88..120B. doi:10.1016/S0925-4005(02)00315-5. /wiki/Bibcode_(identifier)
Okuyama, S.O.S.; Mitobe, Y.M.Y.; Okuyama, K.O.K.; Matsushita, K.M.K. (2000). "Hydrogen gas sensing using a Pd-coated cantilever". Japanese Journal of Applied Physics. 39 (6R): 3584. Bibcode:2000JaJAP..39.3584O. doi:10.1143/JJAP.39.3584. https://iopscience.iop.org/article/10.1143/JJAP.39.3584/meta
Henriksson, Jonas (2012). "Ultra-low power hydrogen sensing based on a palladium-coated nanomechanical beam resonator". Nanoscale. 4 (16). Nanoscale Journal: 5059–64. Bibcode:2012Nanos...4.5059H. doi:10.1039/c2nr30639e. PMID 22767251. Retrieved 2013-02-26. http://pubs.rsc.org/en/Content/ArticleLanding/2012/NR/c2nr30639e
Pitts, Ronald; Ping Liu; Se-Hee Lee; Ed Tracy. "Interfacial Stability Of Thin Film Hydrogen Sensors" (PDF). National Renewable Energy Laboratory. Retrieved 2008-10-21. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/30535bb.pdf
"Hydrogen Detection Systems". Makel Engineering. Retrieved 2008-10-21. http://www.makelengineering.com/dir/Technologies/Hydrogen%20Detection/Hydrogen.htm
Oleksenko, Ludmila P.; Maksymovych, Nelly P.; Sokovykh, Evgeniy V.; Matushko, Igor P.; Buvailo, Andrii I.; Dollahon, Norman (2014-06-01). "Study of influence of palladium additives in nanosized tin dioxide on sensitivity of adsorption semiconductor sensors to hydrogen". Sensors and Actuators B: Chemical. 196: 298–305. Bibcode:2014SeAcB.196..298O. doi:10.1016/j.snb.2014.02.019. /wiki/Bibcode_(identifier)
Hong, Hyung-Ki; Kwon, Chul Han; Kim, Seung-Ryeol; Yun, Dong Hyun; Lee, Kyuchung; Sung, Yung Kwon (2000-07-25). "Portable electronic nose system with gas sensor array and artificial neural network". Sensors and Actuators B: Chemical. 66 (1–3): 49–52. Bibcode:2000SeAcB..66...49H. doi:10.1016/S0925-4005(99)00460-8. /wiki/Bibcode_(identifier)
Oleksenko, Ludmila P.; Maksymovych, Nelly P.; Buvailo, Andrii I.; Matushko, Igor P.; Dollahon, Norman (2012-11-01). "Adsorption-semiconductor hydrogen sensors based on nanosized tin dioxide with cobalt oxide additives". Sensors and Actuators B: Chemical. 174: 39–44. Bibcode:2012SeAcB.174...39O. doi:10.1016/j.snb.2012.07.079. /wiki/Bibcode_(identifier)
"DetecTape H2 — Low Cost Visual Hydrogen Leak Detector". www.detectape.com. Retrieved 18 April 2018. http://www.detectape.com/
Ghirardi, Maria L. (1 September 2015). "Implementation of photobiological H2 production: the O2 sensitivity of hydrogenases". Photosynthesis Research. 125 (3): 383–393. doi:10.1007/s11120-015-0158-1. PMID 26022106. S2CID 14725142. /wiki/Doi_(identifier)
"Schottky energy barrier" (PDF). electrochem.org. Retrieved 18 April 2018. http://www.electrochem.org/dl/interface/spr/spr06/spr06_p66-69.pdf
"A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode h…". iop.org. 4 August 2012. Archived from the original on 4 August 2012. Retrieved 18 April 2018. https://archive.today/20120804174100/http://iopscience.iop.org/0268-1242/18/7/303
"Hydrogenation-induced insulating state in the intermetallic compound LaMg2Ni". biomedexperts.com. Archived from the original on 2012-02-13. Retrieved 18 April 2018. https://web.archive.org/web/20120213100941/http://www.biomedexperts.com/Abstract.bme/15783759/Hydrogenation-induced_insulating_state_in_the_intermetallic_compound_LaMg2Ni
"Hydrogen sensors are faster, more sensitive". Innovations Report. 2005-05-31. Retrieved 2008-10-21. http://www.innovations-report.com/html/reports/physics_astronomy/report-44815.html